File size: 2,912 Bytes
07d5247
058e9d8
 
6d70521
058e9d8
01807fb
07d5247
058e9d8
3b633b6
36b6742
33eab73
 
36b6742
01807fb
33eab73
 
07d5247
15aeac6
3f4749b
a2749d1
3f4749b
aee7712
a2749d1
3f4749b
a2749d1
058e9d8
 
a2749d1
b32943f
 
 
 
 
33eab73
d5fa67e
a2749d1
26d38a8
 
35b8f44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(device)
pipe.enable_xformers_memory_efficient_attention()
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, safety_checker=None)
upscaler = upscaler.to(device)
upscaler.enable_xformers_memory_efficient_attention()


def genie (Prompt, negative_prompt, height, width, scale, steps, Seed, upscale):
    generator = torch.Generator(device=device).manual_seed(seed)
    if upscale == "Yes":
        low_res_latents = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images
        image = upscaler(Prompt, negative_prompt=negative_prompt, image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0]
    else:
        image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
    return image
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=10, step=.25), 
                               gr.Slider(25, maximum=100, value=50, step=25), 
                               gr.Slider(minimum=1, step=1, maximum=9999999999999999, randomize=True), 
                               gr.Radio(["Yes", "No"], label='Upscale?', value='No'),
                              ],
             outputs=gr.Image(label='Generated Image'), 
             title="PhotoReal V2 with SD x2 Upscaler - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)