Spaces:
Paused
Paused
File size: 15,780 Bytes
dee7921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# -*- coding: utf-8 -*-
#!pip install gradio
#!pip install -U sentence-transformers
#!pip install langchain
#!pip install openai
#!pip install -U chromadb
import gradio as gr
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from langchain.llms import OpenAI
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain import LLMMathChain, SQLDatabase, SQLDatabaseChain, LLMChain
from langchain.agents import initialize_agent, Tool
from langchain.agents import ZeroShotAgent, AgentExecutor
from langchain.memory import ConversationBufferWindowMemory
from langchain.schema import AIMessage, HumanMessage
import sqlite3
import pandas as pd
import json
from functools import partial
import chromadb
import os
#cxn = sqlite3.connect('./data/mbr.db')
"""# import models"""
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
#The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
"""# setup vector db
- chromadb
- https://docs.trychroma.com/getting-started
"""
from chromadb.config import Settings
chroma_client = chromadb.Client(settings=Settings(
chroma_db_impl="duckdb+parquet",
persist_directory="./data/mychromadb/" # Optional, defaults to .chromadb/ in the current directory
))
#!ls ./data/mychromadb/
#collection = chroma_client.create_collection(name="benefit_collection")
collection = chroma_client.get_collection(name="plan_collection", embedding_function=bi_encoder)
faq_collection = chroma_client.get_collection(name="faq_collection", embedding_function=bi_encoder)
"""### vector db search examples"""
def rtrv(qry, collection, top_k=20):
results = collection.query(
query_embeddings=[ bi_encoder.encode(qry) ],
n_results=top_k,
)
return results
def vdb_src(qry, collection, src, top_k=20):
results = collection.query(
query_embeddings=[ bi_encoder.encode(qry) ],
n_results=top_k,
where={"source": src},
)
return results
def vdb_where(qry, collection, where, top_k=20):
results = collection.query(
query_embeddings=[ bi_encoder.encode(qry) ],
n_results=top_k,
where=where,
)
return results
def vdb_pretty(qry, collection, top_k=10):
results = collection.query(
query_embeddings=[ bi_encoder.encode(qry) ],
n_results=top_k,
include=["metadatas", "documents", "distances","embeddings"]
)
rslt_pd = pd.DataFrame(results ).explode(['ids','documents', 'metadatas', 'distances', 'embeddings'])
rslt_fmt = pd.concat([rslt_pd.drop(['metadatas'], axis=1), rslt_pd['metadatas'].apply(pd.Series)], axis=1 )
return rslt_fmt
# qry = 'Why should I chose Medicare Advantage over traditional Medicare?'
# rslt_fmt = vdb_pretty(qry, top_k=10)
# rslt_fmt
# doc_lst = rslt_fmt[['documents']].values.tolist()
# len(doc_lst)
"""# Introduction
- example of the kind of question answering that is possible with this tool
- assumes we are answering for a member with a Healthy Options Card
*When will I get my card?*
# semantic search functions
"""
# choosing to use rerank for this use case as a baseline
def rernk(query, collection=collection, where=None, top_k=20, top_n = 5):
rtrv_rslts = vdb_where(query, collection=collection, where=where, top_k=top_k)
rtrv_ids = rtrv_rslts.get('ids')[0]
rtrv_docs = rtrv_rslts.get('documents')[0]
##### Re-Ranking #####
cross_inp = [[query, doc] for doc in rtrv_docs]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
combined = list(zip(rtrv_ids, list(cross_scores)))
sorted_tuples = sorted(combined, key=lambda x: x[1], reverse=True)
sorted_ids = [t[0] for t in sorted_tuples[:top_n]]
predictions = collection.get(ids=sorted_ids, include=["documents","metadatas"])
return predictions
#return cross_scores
## version w/o re-rank
# def get_text_fmt(qry):
# prediction_text = []
# predictions = rtrv(qry, top_k = 5)
# docs = predictions['documents'][0]
# meta = predictions['metadatas'][0]
# for i in range(len(docs)):
# result = Document(page_content=docs[i], metadata=meta[i])
# prediction_text.append(result)
# return prediction_text
def get_text_fmt(qry, collection=collection, where=None):
prediction_text = []
predictions = rernk(qry, collection=collection, where=where, top_k=20, top_n = 5)
docs = predictions['documents']
meta = predictions['metadatas']
for i in range(len(docs)):
result = Document(page_content=docs[i], metadata=meta[i])
prediction_text.append(result)
return prediction_text
# get_text_fmt('why should I choose a medicare advantage plan over traditional medicare?')
"""# LLM based qa functions"""
llm = OpenAI(temperature=0)
# default model
# model_name: str = "text-davinci-003"
# instruction fine-tuned, sometimes referred to as GPT-3.5
template = """You are a friendly AI assistant for the insurance company Humana.
Given the following extracted parts of a long document and a question, create a succinct final answer.
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
If the question is not about Humana, politely inform the user that you are tuned to only answer questions about Humana.
QUESTION: {question}
=========
{summaries}
=========
FINAL ANSWER:"""
PROMPT = PromptTemplate(template=template, input_variables=["summaries", "question"])
chain_qa = load_qa_with_sources_chain(llm=llm, chain_type="stuff", prompt=PROMPT, verbose=False)
def get_llm_response(message, collection=collection, where=None):
mydocs = get_text_fmt(message, collection, where)
responses = chain_qa({"input_documents":mydocs, "question":message})
return responses
get_llm_response_humana = partial(get_llm_response, where={'company':'humana'})
get_llm_response_essence = partial(get_llm_response, where={'company':'essence'})
get_llm_response_faq = partial(get_llm_response, collection=faq_collection)
# rslt = get_llm_response('can I buy shrimp?')
# rslt['output_text']
# for d in rslt['input_documents']:
# print(d.page_content)
# print(d.metadata['url'])
# rslt['output_text']
"""# Database query"""
## setup member database
## only do this once
# d = {'mbr_fname':['bruce'],
# 'mbr_lname':['broussard'],
# 'mbr_id':[456] ,
# 'policy_id':['H1036-236'],
# 'accumulated_out_of_pocket':[3800],
# 'accumulated_routine_footcare_visits':[6],
# 'accumulated_trasportation_trips':[22],
# 'accumulated_drug_cost':[7500],
# }
# df = pd.DataFrame(data=d, columns=['mbr_fname', 'mbr_lname', 'mbr_id', 'policy_id', 'accumulated_out_of_pocket', 'accumulated_routine_footcare_visits', 'accumulated_trasportation_trips','accumulated_drug_cost'])
# df.to_sql(name='mbr_details', con=cxn, if_exists='replace')
# # sample db query
# qry = '''select accumulated_routine_footcare_visits
# from mbr_details'''
# foot_det = pd.read_sql(qry, cxn)
# foot_det.values[0][0]
#db = SQLDatabase.from_uri("sqlite:///./data/mbr.db")
#db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True, return_intermediate_steps=True)
#def db_qry(qry):
# responses = db_chain('my mbr_id is 456 ;'+str(qry) ) ############### hardcode mbr id 456 for demo
# return responses
"""# Math
- default version
"""
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
# llm_math_chain.run('what is the square root of 49?')
"""# Greeting"""
template = """You are an AI assistant for the insurance company Humana.
Your name is Jarvis and you were created on February 13, 2023.
Offer polite, friendly greetings and brief small talk.
Respond to thanks with, 'Glad to help.'
If the question is not about Humana, politely guide the user to ask questions about Humana insurance benefits
QUESTION: {question}
=========
FINAL ANSWER:"""
greet_prompt = PromptTemplate(template=template, input_variables=["question"])
greet_llm = LLMChain(prompt=greet_prompt, llm=llm, verbose=True)
# greet_llm.run('will it snow in Lousiville tomorrow')
# greet_llm.run('Thanks, that was great')
"""# MRKL Chain"""
tools = [
Tool(
name = "Humana Plans",
func=get_llm_response_humana,
description='''Useful for confirming benefits of Humana plans.
Useful for answering questions about Humana insurance plans.
You should ask targeted questions.'''
),
Tool(
name = "Essence Plans",
func=get_llm_response_essence,
description='''Useful for confirming benefits of Essence Healthcare plans.
Useful for answering questions about Essence Healthcare plans.
You should ask targeted questions.'''
),
Tool(
name = "FAQ",
func=get_llm_response_faq,
description='''Useful for answering general health insurance questions. Useful for answering questions about Medicare and
Medicare Advantage. '''
),
Tool(
name="Calculator",
func=llm_math_chain.run,
description="""Only useful for when you need to answer questions about math, like subtracting two numbers or dividing numbers.
This tool should not be used to look up facts."""
),
#Tool(
# name = "Search",
# func=search.run,
# description="Useful for when you need to answer questions than can not be answered using the other tools. This tool is a last resort."
#),
Tool(
name="Greeting",
func=greet_llm.run,
return_direct=True,
description="useful for when you need to respond to greetings, thanks, make small talk or answer questions about yourself"
),
]
##### Create Agent
#mrkl = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=False, return_intermediate_steps=True, max_iterations=5, early_stopping_method="generate")
prefix = """Answer the following question as best as you can. You should not make up any answers. To answer the question, use the following
tools:"""
suffix = """If the question is not about healthcare or Humana,
you should use the "Greeting" tool and pass it the question being asked.
If you are not confident in which tool to use,
you should use the "Greeting" tool and pass it the question being asked.
Remember, only answer using the information output from the
tools! Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"]
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True,
max_iterations=5, early_stopping_method="generate",
return_intermediate_steps=True)
def make_memory_buffer(history, mem_len=2):
mem = ConversationBufferWindowMemory(k=mem_len, memory_key="chat_history", output_key="output")
hist = []
for user,ai in history:
hist+=[HumanMessage(content=user), AIMessage(content=ai)]
mem.chat_memory.messages = hist
return mem
def agent_rspnd(qry, history, agent=agent_chain):
agent.memory = make_memory_buffer(history)
response = agent({"input":str(qry) })
return response
def make_memory_buffer(history, mem_len=2):
hist = []
for user,ai in history:
hist+=[HumanMessage(content=user), AIMessage(content=ai)]
mem = ConversationBufferWindowMemory(k=mem_len, memory_key="chat_history", output_key="output")
mem.chat_memory.messages = hist
return mem
def agent_rspnd(qry, history):
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True,
memory=make_memory_buffer(history),
max_iterations=5, early_stopping_method="generate",
return_intermediate_steps=True)
response = agent_chain({"input":str(qry) })
return response
def mrkl_rspnd(qry):
response = mrkl({"input":str(qry) })
return response
# r = mrkl_rspnd("can I buy fish with the card?")
# print(r['output'])
# print(json.dumps(r['intermediate_steps'], indent=2))
#r['intermediate_steps']
# from IPython.core.display import display, HTML
def get_cot(r):
cot = '<p>'
try:
intermedObj = r['intermediate_steps']
cot +='<b>Input:</b> '+r['input']+'<br>'
for agnt_action, obs in intermedObj:
al = '<br> '.join(agnt_action.log.split('\n') )
cot += '<b>AI chain of thought:</b> '+ al +'<br>'
if type(obs) is dict:
if obs.get('input_documents') is not None: #### this criteria doesn't work
for d in obs['input_documents']:
cot += ' '+'<i>- '+str(d.page_content)+'</i>'+' <a href="'+ str(d.metadata['url']) +'">'+str(d.metadata['page'])+'</a> '+'<br>'
cot += '<b>Observation:</b> '+str(obs['output_text']) +'<br><br>'
elif obs.get('intermediate_steps') is not None:
cot += '<b>Query:</b> '+str(obs.get('intermediate_steps')) +'<br><br>'
else:
pass
else:
cot += '<b>Observation:</b> '+str(obs) +'<br><br>'
except:
pass
cot += '</p>'
return cot
# cot = get_cot(r)
# display(HTML(cot))
"""# chat example"""
def chat(message, history):
history = history or []
#message = message.lower()
response = agent_rspnd(message, history)
cot = get_cot(response)
history.append((message, response['output']))
return history, history, cot
css=".gradio-container {background-color: whitesmoke}"
xmpl_list = ["How does Humana's transportation benefit compare to Essence's?",
"Why should I choose a Medicare Advantage plan over Traditional Medicare?",
"What is the difference between a Medicare Advantage HMO plan and a PPO plan?",
"What is a low income subsidy plan and do I qualify for one of these plans?",
"Are my medications covered on a low income subsidy plan?"]
with gr.Blocks(css=css) as demo:
history_state = gr.State()
response_state = gr.State()
gr.Markdown('# Sales QA Bot')
gr.Markdown("""You are a **Louisville, KY** resident who currently has **Medicare Advantage** through an insurer called
**Essence Healthcare**. You don't know a lot about Medicare Advantage or your current benefits, so you may have questions about
how Humana's plans compare. This bot is here to help you learn about what **Humana has to offer** while answering any
other questions you might have. Welcome!""")
with gr.Row():
chatbot = gr.Chatbot()
with gr.Accordion(label='Show AI chain of thought: ', open=False,):
ai_cot = gr.HTML(show_label=False)
with gr.Row():
message = gr.Textbox(label='Input your question here:',
placeholder='Why should I choose Medicare Advantage?',
lines=1)
submit = gr.Button(value='Send',
variant='secondary').style(full_width=False)
submit.click(chat,
inputs=[message, history_state],
outputs=[chatbot, history_state, ai_cot])
gr.Examples(
examples=xmpl_list,
inputs=message
)
demo.launch()
|