Spaces:
Running
Running
File size: 12,599 Bytes
12761b6 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 8bdf52a 12761b6 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 8bdf52a 690c5f2 8bdf52a 690c5f2 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 8bdf52a 690c5f2 8bdf52a 12761b6 690c5f2 8bdf52a 12761b6 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 8bdf52a 12761b6 690c5f2 8bdf52a 690c5f2 8bdf52a 690c5f2 8bdf52a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import argparse
import os
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import pkg_resources
from dash_bio import Clustergram
from proscope.data import get_genename_to_uniprot, get_lddt, get_seq
seq = get_seq()
genename_to_uniprot = get_genename_to_uniprot()
lddt = get_lddt()
import sys
from glob import glob
import numpy as np
from atac_rna_data_processing.config.load_config import load_config
from atac_rna_data_processing.io.celltype import GETCellType
from atac_rna_data_processing.io.nr_motif_v1 import NrMotifV1
from proscope.af2 import AFPairseg
from proscope.protein import Protein
from proscope.viewer import view_pdb_html
args = argparse.ArgumentParser()
args.add_argument("-p", "--port", type=int, default=7860, help="Port number")
args.add_argument("-s", "--share", action="store_true", help="Share on network")
args.add_argument("-d", "--data", type=str, default="/data", help="Data directory")
args = args.parse_args()
# set pseudo args
# args = args.parse_args(['-p', '7869', '-s', '-d', '/manitou/pmg/users/xf2217/demo_data'])
gene_pairs = glob(f"{args.data}/structures/causal/*")
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
GET_CONFIG = load_config(
"/manitou/pmg/users/xf2217/atac_rna_data_processing/atac_rna_data_processing/config/GET"
)
GET_CONFIG.celltype.jacob = True
GET_CONFIG.celltype.num_cls = 2
GET_CONFIG.celltype.input = True
GET_CONFIG.celltype.embed = True
GET_CONFIG.celltype.data_dir = (
"/manitou/pmg/users/xf2217/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
)
GET_CONFIG.celltype.interpret_dir = (
"/manitou/pmg/users/xf2217/Interpretation_all_hg38_allembed_v4_natac/"
)
GET_CONFIG.motif_dir = "/manitou/pmg/users/xf2217/interpret_natac/motif-clustering"
motif = NrMotifV1.load_from_pickle(
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
GET_CONFIG.motif_dir,
)
cell_type_annot = pd.read_csv(
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
)
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
avaliable_celltypes = sorted(
[
cell_type_id_to_name[f.split("/")[-1]]
for f in glob(GET_CONFIG.celltype.interpret_dir + "*")
]
)
plt.rcParams["figure.dpi"] = 100
def visualize_AF2(tf_pair, a):
strcture_dir = f"{args.data}/structures/causal/{tf_pair}"
fasta_dir = f"{args.data}/sequences/causal/{tf_pair}"
if not os.path.exists(strcture_dir):
gr.ErrorText("No such gene pair")
a = AFPairseg(strcture_dir, fasta_dir)
segpair.choices = list(a.pairs_data.keys())
fig1, ax1 = a.plot_plddt_gene1()
fig2, ax2 = a.plot_plddt_gene2()
fig3, ax3 = a.protein1.plot_plddt()
fig4, ax4 = a.protein2.plot_plddt()
fig5, ax5 = a.plot_score_heatmap()
plt.tight_layout()
new_dropdown = update_dropdown(list(a.pairs_data.keys()), "Segment pair")
return fig1, fig2, fig3, fig4, fig5, new_dropdown, a
def view_pdb(seg_pair, a):
pdb_path = a.pairs_data[seg_pair].pdb
return view_pdb_html(pdb_path), a, pdb_path
def update_dropdown(x, label):
return gr.Dropdown.update(choices=x, label=label)
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
celltype_id = cell_type_name_to_id[celltype_name]
cell = GETCellType(celltype_id, GET_CONFIG)
cell.celltype_name = celltype_name
gene_exp_fig = cell.plotly_gene_exp()
return gene_exp_fig, cell
def plot_gene_regions(cell, gene_name, plotly=True):
return cell.plot_gene_regions(gene_name, plotly=plotly), cell
def plot_gene_motifs(cell, gene_name, motif, overwrite=False):
return cell.plot_gene_motifs(gene_name, motif, overwrite=overwrite)[0], cell
def plot_motif_subnet(cell, motif_collection, m, type="neighbors", threshold=0.1):
return (
cell.plotly_motif_subnet(motif_collection, m, type=type, threshold=threshold),
cell,
)
def plot_gene_exp(cell, plotly=True):
return cell.plotly_gene_exp(plotly=plotly), cell
def plot_motif_corr(cell):
fig = Clustergram(
data=cell.gene_by_motif.corr,
column_labels=list(cell.gene_by_motif.corr.columns.values),
row_labels=list(cell.gene_by_motif.corr.index),
hidden_labels=["row", "col"],
link_method="average",
display_ratio=0.1,
width=600,
height=500,
color_map="rdbu_r",
)
return fig, cell
if __name__ == "__main__":
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
seg_pairs = gr.State([""])
af = gr.State(None)
cell = gr.State(None)
gr.Markdown(
"""
# GET: A Foundation Model of Transcription Across Human Cell Types
_Transcriptional regulation, involving the complex interplay between regulatory sequences and proteins,
directs all biological processes. Computational models of transcriptions lack generalizability
to accurately extrapolate in unseen cell types and conditions. Here, we introduce GET,
an interpretable foundation model, designed to uncover deep regulatory patterns across 235 human fetal and adult cell types.
Relying exclusively on chromatin accessibility data and sequence information, GET achieves experimental-level accuracy
in predicting gene expression even in previously unseen cell types. GET showcases remarkable adaptability across new sequencing platforms and assays,
making it possible to infer regulatory activity across a broad range of cell types and conditions,
and to uncover universal and cell type specific transcription factor interaction networks.
We tested its performance on prediction of chromatin regulatory activity,
inference of regulatory elements and regulators of fetal hemoglobin,
and identification of known physical interactions between transcription factors.
In particular, we show GET outperforms current models in predicting lentivirus-based massive parallel reporter assay readout with reduced input data.
In fetal erythroblast, we are able to identify distant (>1Mbps) regulatory regions that were missed by previous models.
In sum, we provide a generalizable and predictive cell type specific model for transcription together with catalogs of gene regulation and transcription factor interactions.
Benefit from this catalog, we are able to provide mechanistic understanding of previously unknown significance germline coding variants in disordered regions of PAX5, a lymphoma associated transcription factor._
"""
)
with gr.Row() as row:
# Left column: Plot gene expression and gene regions
with gr.Column():
gr.Markdown(
"""
## Prediction performance
This section allows the selection of cell types and provides a plot depicting the observed versus predicted gene expression levels.
"""
)
with gr.Row() as row:
celltype_name = gr.Dropdown(
label="Cell Type", choices=avaliable_celltypes
)
celltype_btn = gr.Button(value="Load & Plot Gene Expression")
gene_exp_plot = gr.Plot(label="Gene Expression Pred vs Obs")
# Right column: Plot gene motifs
with gr.Column():
gr.Markdown(
"""
## Cell-type specific regulatory inference
This section allows the selection of a gene and provides plots of its cell-type specific regulatory regions and motifs.
"""
)
gene_name_for_region = gr.Textbox(
label="Get important regions or motifs for gene:"
)
with gr.Row() as row:
region_plot_btn = gr.Button(value="Regions")
motif_plot_btn = gr.Button(value="Motifs")
region_plot = gr.Plot(label="Gene Regions")
motif_plot = gr.Plot(label="Gene Motifs")
gr.Markdown(
"""
## Motif Correlation and Causal Subnetworks
Here, you can generate a heatmap to visualize motif correlations. Alternatively, you can explore the causal subnetworks related to specific motifs by selecting the motif and the type of subnetwork you are interested in, along with a effect size threshold.
"""
)
with gr.Row() as row:
with gr.Column():
clustergram_btn = gr.Button(value="Plot Motif Correlation Heatmap")
clustergram_plot = gr.Plot(label="Motif Correlation")
# Right column: Motif subnet plot
with gr.Column():
with gr.Row() as row:
motif_for_subnet = gr.Dropdown(
label="Motif Causal Subnetwork", choices=motif.cluster_names
)
subnet_type = gr.Dropdown(
label="Type",
choices=["neighbors", "parents", "children"],
default="neighbors",
)
# slider for threshold 0.01-0.2
subnet_threshold = gr.Slider(
label="Threshold",
minimum=0.01,
maximum=0.25,
step=0.01,
value=0.1,
)
subnet_btn = gr.Button(value="Plot Motif Causal Subnetwork")
subnet_plot = gr.Plot(label="Motif Causal Subnetwork")
gr.Markdown(
"""
## Structural atlas of TF-TF and TF-EP300 interactions
This section allows you to explore transcription factor pairs. You can visualize various metrics such as Heatmaps and pLDDT (predicted Local Distance Difference Test) for both proteins in the interacting pair. You can also download the PDB file for specific segment pairs.
"""
)
with gr.Row() as row:
with gr.Column():
with gr.Row() as row:
tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
tf_pairs_btn = gr.Button(value="Load & Plot")
heatmap = gr.Plot(label="Heatmap")
interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
protein1_plddt = gr.Plot(label="Protein 1 pLDDT")
protein2_plddt = gr.Plot(label="Protein 2 pLDDT")
with gr.Column():
with gr.Row() as row:
segpair = gr.Dropdown(label="Seg pair", choices=seg_pairs.value)
segpair_btn = gr.Button(value="Get PDB")
pdb_html = gr.HTML(label="PDB HTML")
pdb_file = gr.File(label="Download PDB")
tf_pairs_btn.click(
visualize_AF2,
inputs=[tf_pairs, af],
outputs=[
interact_plddt1,
interact_plddt2,
protein1_plddt,
protein2_plddt,
heatmap,
segpair,
af,
],
)
segpair_btn.click(
view_pdb, inputs=[segpair, af], outputs=[pdb_html, af, pdb_file]
)
celltype_btn.click(
load_and_plot_celltype,
inputs=[celltype_name, gr.State(GET_CONFIG), cell],
outputs=[gene_exp_plot, cell],
)
region_plot_btn.click(
plot_gene_regions,
inputs=[cell, gene_name_for_region],
outputs=[region_plot, cell],
)
motif_plot_btn.click(
plot_gene_motifs,
inputs=[cell, gene_name_for_region, gr.State(motif)],
outputs=[motif_plot, cell],
)
clustergram_btn.click(
plot_motif_corr, inputs=[cell], outputs=[clustergram_plot, cell]
)
subnet_btn.click(
plot_motif_subnet,
inputs=[
cell,
gr.State(motif),
motif_for_subnet,
subnet_type,
subnet_threshold,
],
outputs=[subnet_plot, cell],
)
demo.launch(share=args.share, server_port=args.port)
|