File size: 12,599 Bytes
12761b6
8bdf52a
 
 
 
690c5f2
12761b6
 
690c5f2
12761b6
8bdf52a
 
 
12761b6
 
 
 
 
 
 
8bdf52a
 
 
 
 
 
 
 
690c5f2
12761b6
690c5f2
12761b6
8bdf52a
690c5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
12761b6
 
690c5f2
12761b6
690c5f2
 
 
 
 
 
 
 
 
 
 
 
 
12761b6
 
8bdf52a
 
 
 
 
 
 
 
 
 
 
 
 
 
690c5f2
8bdf52a
 
690c5f2
8bdf52a
 
 
 
 
 
 
 
690c5f2
12761b6
 
 
 
 
690c5f2
 
 
12761b6
 
 
690c5f2
12761b6
 
 
690c5f2
 
 
 
 
 
 
12761b6
 
 
 
690c5f2
12761b6
690c5f2
 
 
 
 
 
 
 
 
 
 
12761b6
 
8bdf52a
690c5f2
 
 
8bdf52a
12761b6
690c5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bdf52a
12761b6
8bdf52a
690c5f2
 
 
 
 
 
12761b6
690c5f2
 
 
 
 
 
12761b6
 
690c5f2
 
 
 
 
 
 
 
 
12761b6
690c5f2
 
12761b6
690c5f2
 
12761b6
690c5f2
 
 
 
 
 
 
12761b6
 
690c5f2
 
12761b6
 
 
 
690c5f2
 
 
 
 
 
 
 
12761b6
690c5f2
 
 
 
 
 
 
 
 
12761b6
690c5f2
 
 
 
 
 
 
12761b6
 
 
690c5f2
 
 
 
 
 
 
 
8bdf52a
12761b6
690c5f2
 
8bdf52a
690c5f2
8bdf52a
690c5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bdf52a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import argparse
import os

import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import pkg_resources
from dash_bio import Clustergram
from proscope.data import get_genename_to_uniprot, get_lddt, get_seq

seq = get_seq()
genename_to_uniprot = get_genename_to_uniprot()
lddt = get_lddt()
import sys
from glob import glob

import numpy as np
from atac_rna_data_processing.config.load_config import load_config
from atac_rna_data_processing.io.celltype import GETCellType
from atac_rna_data_processing.io.nr_motif_v1 import NrMotifV1
from proscope.af2 import AFPairseg
from proscope.protein import Protein
from proscope.viewer import view_pdb_html

args = argparse.ArgumentParser()
args.add_argument("-p", "--port", type=int, default=7860, help="Port number")
args.add_argument("-s", "--share", action="store_true", help="Share on network")
args.add_argument("-d", "--data", type=str, default="/data", help="Data directory")
args = args.parse_args()
# set pseudo args
# args = args.parse_args(['-p', '7869', '-s', '-d', '/manitou/pmg/users/xf2217/demo_data'])
gene_pairs = glob(f"{args.data}/structures/causal/*")
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
GET_CONFIG = load_config(
    "/manitou/pmg/users/xf2217/atac_rna_data_processing/atac_rna_data_processing/config/GET"
)
GET_CONFIG.celltype.jacob = True
GET_CONFIG.celltype.num_cls = 2
GET_CONFIG.celltype.input = True
GET_CONFIG.celltype.embed = True
GET_CONFIG.celltype.data_dir = (
    "/manitou/pmg/users/xf2217/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
)
GET_CONFIG.celltype.interpret_dir = (
    "/manitou/pmg/users/xf2217/Interpretation_all_hg38_allembed_v4_natac/"
)
GET_CONFIG.motif_dir = "/manitou/pmg/users/xf2217/interpret_natac/motif-clustering"
motif = NrMotifV1.load_from_pickle(
    pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
    GET_CONFIG.motif_dir,
)
cell_type_annot = pd.read_csv(
    GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
    + "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
)
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
avaliable_celltypes = sorted(
    [
        cell_type_id_to_name[f.split("/")[-1]]
        for f in glob(GET_CONFIG.celltype.interpret_dir + "*")
    ]
)
plt.rcParams["figure.dpi"] = 100


def visualize_AF2(tf_pair, a):
    strcture_dir = f"{args.data}/structures/causal/{tf_pair}"
    fasta_dir = f"{args.data}/sequences/causal/{tf_pair}"
    if not os.path.exists(strcture_dir):
        gr.ErrorText("No such gene pair")

    a = AFPairseg(strcture_dir, fasta_dir)
    segpair.choices = list(a.pairs_data.keys())
    fig1, ax1 = a.plot_plddt_gene1()
    fig2, ax2 = a.plot_plddt_gene2()
    fig3, ax3 = a.protein1.plot_plddt()
    fig4, ax4 = a.protein2.plot_plddt()
    fig5, ax5 = a.plot_score_heatmap()
    plt.tight_layout()
    new_dropdown = update_dropdown(list(a.pairs_data.keys()), "Segment pair")
    return fig1, fig2, fig3, fig4, fig5, new_dropdown, a


def view_pdb(seg_pair, a):
    pdb_path = a.pairs_data[seg_pair].pdb
    return view_pdb_html(pdb_path), a, pdb_path


def update_dropdown(x, label):
    return gr.Dropdown.update(choices=x, label=label)


def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
    celltype_id = cell_type_name_to_id[celltype_name]
    cell = GETCellType(celltype_id, GET_CONFIG)
    cell.celltype_name = celltype_name
    gene_exp_fig = cell.plotly_gene_exp()
    return gene_exp_fig, cell


def plot_gene_regions(cell, gene_name, plotly=True):
    return cell.plot_gene_regions(gene_name, plotly=plotly), cell


def plot_gene_motifs(cell, gene_name, motif, overwrite=False):
    return cell.plot_gene_motifs(gene_name, motif, overwrite=overwrite)[0], cell


def plot_motif_subnet(cell, motif_collection, m, type="neighbors", threshold=0.1):
    return (
        cell.plotly_motif_subnet(motif_collection, m, type=type, threshold=threshold),
        cell,
    )


def plot_gene_exp(cell, plotly=True):
    return cell.plotly_gene_exp(plotly=plotly), cell


def plot_motif_corr(cell):
    fig = Clustergram(
        data=cell.gene_by_motif.corr,
        column_labels=list(cell.gene_by_motif.corr.columns.values),
        row_labels=list(cell.gene_by_motif.corr.index),
        hidden_labels=["row", "col"],
        link_method="average",
        display_ratio=0.1,
        width=600,
        height=500,
        color_map="rdbu_r",
    )
    return fig, cell


if __name__ == "__main__":
    with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
        seg_pairs = gr.State([""])
        af = gr.State(None)
        cell = gr.State(None)

        gr.Markdown(
            """
        # GET: A Foundation Model of Transcription Across Human Cell Types

        _Transcriptional regulation, involving the complex interplay between regulatory sequences and proteins, 
                    directs all biological processes. Computational models of transcriptions lack generalizability 
                    to accurately extrapolate in unseen cell types and conditions. Here, we introduce GET, 
                    an interpretable foundation model, designed to uncover deep regulatory patterns across 235 human fetal and adult cell types. 
                    Relying exclusively on chromatin accessibility data and sequence information, GET achieves experimental-level accuracy 
                    in predicting gene expression even in previously unseen cell types. GET showcases remarkable adaptability across new sequencing platforms and assays, 
                    making it possible to infer regulatory activity across a broad range of cell types and conditions,
                    and to uncover universal and cell type specific transcription factor interaction networks. 
                    We tested its performance on prediction of chromatin regulatory activity, 
                    inference of regulatory elements and regulators of fetal hemoglobin, 
                    and identification of known physical interactions between transcription factors. 
                    In particular, we show GET outperforms current models in predicting lentivirus-based massive parallel reporter assay readout with reduced input data. 
                    In fetal erythroblast, we are able to identify distant (>1Mbps) regulatory regions that were missed by previous models. 
                    In sum, we provide a generalizable and predictive cell type specific model for transcription together with catalogs of gene regulation and transcription factor interactions. 
                    Benefit from this catalog, we are able to provide mechanistic understanding of previously unknown significance germline coding variants in disordered regions of PAX5, a lymphoma associated transcription factor._
        """
        )

        with gr.Row() as row:
            # Left column: Plot gene expression and gene regions
            with gr.Column():
                gr.Markdown(
                    """
## Prediction performance
This section allows the selection of cell types and provides a plot depicting the observed versus predicted gene expression levels.
"""
                )
                with gr.Row() as row:
                    celltype_name = gr.Dropdown(
                        label="Cell Type", choices=avaliable_celltypes
                    )
                    celltype_btn = gr.Button(value="Load & Plot Gene Expression")
                gene_exp_plot = gr.Plot(label="Gene Expression Pred vs Obs")

            # Right column: Plot gene motifs
            with gr.Column():
                gr.Markdown(
                    """
## Cell-type specific regulatory inference
This section allows the selection of a gene and provides plots of its cell-type specific regulatory regions and motifs.
"""
                )
                gene_name_for_region = gr.Textbox(
                    label="Get important regions or motifs for gene:"
                )
                with gr.Row() as row:
                    region_plot_btn = gr.Button(value="Regions")
                    motif_plot_btn = gr.Button(value="Motifs")

                region_plot = gr.Plot(label="Gene Regions")
                motif_plot = gr.Plot(label="Gene Motifs")

        gr.Markdown(
            """
## Motif Correlation and Causal Subnetworks

Here, you can generate a heatmap to visualize motif correlations. Alternatively, you can explore the causal subnetworks related to specific motifs by selecting the motif and the type of subnetwork you are interested in, along with a effect size threshold.
"""
        )
        with gr.Row() as row:
            with gr.Column():
                clustergram_btn = gr.Button(value="Plot Motif Correlation Heatmap")
                clustergram_plot = gr.Plot(label="Motif Correlation")

            # Right column: Motif subnet plot
            with gr.Column():
                with gr.Row() as row:
                    motif_for_subnet = gr.Dropdown(
                        label="Motif Causal Subnetwork", choices=motif.cluster_names
                    )
                    subnet_type = gr.Dropdown(
                        label="Type",
                        choices=["neighbors", "parents", "children"],
                        default="neighbors",
                    )
                    # slider for threshold 0.01-0.2
                    subnet_threshold = gr.Slider(
                        label="Threshold",
                        minimum=0.01,
                        maximum=0.25,
                        step=0.01,
                        value=0.1,
                    )
                subnet_btn = gr.Button(value="Plot Motif Causal Subnetwork")
                subnet_plot = gr.Plot(label="Motif Causal Subnetwork")

        gr.Markdown(
            """
## Structural atlas of TF-TF and TF-EP300 interactions

This section allows you to explore transcription factor pairs. You can visualize various metrics such as Heatmaps and pLDDT (predicted Local Distance Difference Test) for both proteins in the interacting pair. You can also download the PDB file for specific segment pairs.
"""
        )
        with gr.Row() as row:
            with gr.Column():
                with gr.Row() as row:
                    tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
                    tf_pairs_btn = gr.Button(value="Load & Plot")
                heatmap = gr.Plot(label="Heatmap")
                interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
                interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
                protein1_plddt = gr.Plot(label="Protein 1 pLDDT")
                protein2_plddt = gr.Plot(label="Protein 2 pLDDT")

            with gr.Column():
                with gr.Row() as row:
                    segpair = gr.Dropdown(label="Seg pair", choices=seg_pairs.value)
                    segpair_btn = gr.Button(value="Get PDB")
                pdb_html = gr.HTML(label="PDB HTML")
                pdb_file = gr.File(label="Download PDB")

        tf_pairs_btn.click(
            visualize_AF2,
            inputs=[tf_pairs, af],
            outputs=[
                interact_plddt1,
                interact_plddt2,
                protein1_plddt,
                protein2_plddt,
                heatmap,
                segpair,
                af,
            ],
        )
        segpair_btn.click(
            view_pdb, inputs=[segpair, af], outputs=[pdb_html, af, pdb_file]
        )
        celltype_btn.click(
            load_and_plot_celltype,
            inputs=[celltype_name, gr.State(GET_CONFIG), cell],
            outputs=[gene_exp_plot, cell],
        )
        region_plot_btn.click(
            plot_gene_regions,
            inputs=[cell, gene_name_for_region],
            outputs=[region_plot, cell],
        )
        motif_plot_btn.click(
            plot_gene_motifs,
            inputs=[cell, gene_name_for_region, gr.State(motif)],
            outputs=[motif_plot, cell],
        )
        clustergram_btn.click(
            plot_motif_corr, inputs=[cell], outputs=[clustergram_plot, cell]
        )
        subnet_btn.click(
            plot_motif_subnet,
            inputs=[
                cell,
                gr.State(motif),
                motif_for_subnet,
                subnet_type,
                subnet_threshold,
            ],
            outputs=[subnet_plot, cell],
        )

    demo.launch(share=args.share, server_port=args.port)