georgescutelnicu
commited on
Commit
·
dff563f
1
Parent(s):
56c845b
Upload 17 files
Browse files- app.py +61 -0
- class_names.txt +12 -0
- examples/cloudy.jpg +0 -0
- examples/dew.jpg +0 -0
- examples/fog.jpg +0 -0
- examples/frost.jpg +0 -0
- examples/hail.jpg +0 -0
- examples/lightning.jpg +0 -0
- examples/rain.jpg +0 -0
- examples/rainbow.jpeg +0 -0
- examples/shine.jpg +0 -0
- examples/snow.jpg +0 -0
- examples/sunrise.jpg +0 -0
- examples/tornado.jpg +0 -0
- model.py +25 -0
- model_v3.pth +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import create_effnetb2_model
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
|
9 |
+
# Setup class names
|
10 |
+
with open("class_names.txt", 'r') as f:
|
11 |
+
classes = [name.strip() for name in f]
|
12 |
+
|
13 |
+
# Model and transforms
|
14 |
+
model, transform = create_effnetb2_model(
|
15 |
+
num_classes=len(classes)
|
16 |
+
)
|
17 |
+
|
18 |
+
model.load_state_dict(
|
19 |
+
torch.load(
|
20 |
+
f="model_v3.pth",
|
21 |
+
map_location=torch.device("cpu")
|
22 |
+
)
|
23 |
+
)
|
24 |
+
|
25 |
+
# Predict function
|
26 |
+
def predict(img):
|
27 |
+
|
28 |
+
start_time = timer()
|
29 |
+
|
30 |
+
# Transform the target image and add a batch dimension
|
31 |
+
img = transform(img).unsqueeze(0)
|
32 |
+
|
33 |
+
model.eval()
|
34 |
+
with torch.inference_mode():
|
35 |
+
|
36 |
+
predictions = torch.softmax(model(img), dim=1)
|
37 |
+
|
38 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio)
|
39 |
+
pred_labels_and_probs = {classes[i]: float(predictions[0][i]) for i in range(len(classes))}
|
40 |
+
|
41 |
+
pred_time = round(timer() - start_time, 4)
|
42 |
+
|
43 |
+
return pred_labels_and_probs, pred_time
|
44 |
+
|
45 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
46 |
+
|
47 |
+
# Gradio interface
|
48 |
+
title = "Weather image recognition ⛅❄☔"
|
49 |
+
description = "Classifies the weather from an image, able to recognize 12 types of weather."
|
50 |
+
|
51 |
+
demo = gr.Interface(fn=predict,
|
52 |
+
inputs=gr.Image(type="pil"),
|
53 |
+
outputs=[gr.Label(num_top_classes=1, label="Predictions"),
|
54 |
+
gr.Number(label="Prediction time (s)")],
|
55 |
+
examples=example_list,
|
56 |
+
title=title,
|
57 |
+
description=description)
|
58 |
+
|
59 |
+
|
60 |
+
demo.launch(debug=False,
|
61 |
+
share=False)
|
class_names.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cloudy
|
2 |
+
dew
|
3 |
+
fogsmog
|
4 |
+
frost
|
5 |
+
hail
|
6 |
+
lightning
|
7 |
+
rain
|
8 |
+
rainbow
|
9 |
+
shine
|
10 |
+
snow
|
11 |
+
sunrise
|
12 |
+
tornado
|
examples/cloudy.jpg
ADDED
examples/dew.jpg
ADDED
examples/fog.jpg
ADDED
examples/frost.jpg
ADDED
examples/hail.jpg
ADDED
examples/lightning.jpg
ADDED
examples/rain.jpg
ADDED
examples/rainbow.jpeg
ADDED
examples/shine.jpg
ADDED
examples/snow.jpg
ADDED
examples/sunrise.jpg
ADDED
examples/tornado.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
def create_effnetb2_model(num_classes: int):
|
7 |
+
|
8 |
+
"""Creates an EfficientNetB2 model."""
|
9 |
+
|
10 |
+
# Create model and transforms
|
11 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
12 |
+
transforms = weights.transforms()
|
13 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
14 |
+
|
15 |
+
# Freeze layers
|
16 |
+
for param in model.parameters():
|
17 |
+
param.requires_grad = False
|
18 |
+
|
19 |
+
# Change classifier
|
20 |
+
model.classifier = nn.Sequential(
|
21 |
+
nn.Dropout(p=0.3, inplace=True),
|
22 |
+
nn.Linear(in_features=1408, out_features=num_classes)
|
23 |
+
)
|
24 |
+
|
25 |
+
return model, transforms
|
model_v3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dc5444d4c7cb46fc682a72c83f5cc3316240497e2b5e19f86186c0c866d6791
|
3 |
+
size 31323721
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
torchvision==0.13.0
|
3 |
+
gradio==3.1.4
|