File size: 10,385 Bytes
1cb032f
 
 
 
 
745ccdc
1cb032f
 
 
 
 
 
 
 
 
 
 
 
98cc8c1
 
 
 
 
1cb032f
63c6ec7
 
98cc8c1
1cb032f
 
 
 
 
63c6ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb032f
 
 
 
 
 
63c6ec7
1cb032f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c6ec7
 
 
 
8828684
63c6ec7
 
 
1cb032f
 
 
 
 
 
 
 
 
 
63c6ec7
 
1cb032f
 
 
 
8828684
1cb032f
 
 
 
 
63c6ec7
 
 
 
1cb032f
 
 
 
 
63c6ec7
 
1cb032f
 
 
 
 
 
 
 
 
63c6ec7
 
1cb032f
 
63c6ec7
1cb032f
 
 
63c6ec7
 
 
 
 
 
 
1cb032f
 
63c6ec7
1cb032f
 
 
 
63c6ec7
 
 
 
 
 
 
 
 
 
1cb032f
 
 
63c6ec7
 
 
 
 
 
1cb032f
63c6ec7
 
 
 
 
 
 
 
1cb032f
63c6ec7
 
1cb032f
 
 
63c6ec7
 
 
 
 
8828684
63c6ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
745ccdc
 
1cb032f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from share import *
import config

import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random

from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler

import dlib
from PIL import Image, ImageDraw

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

model = create_model('./models/cldm_v15.yaml').cpu()
model.load_state_dict(load_state_dict(
    './models/control_sd15_landmarks.pth', location='cpu'))
model = model.to(device)
ddim_sampler = DDIMSampler(model)

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")


canvas_html = "<face-canvas id='canvas-root' data-mode='points' style='display:flex;max-width: 500px;margin: 0 auto;'></face-canvas>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/face-canvas.js"
fetch(url)
  .then(res => res.text())
  .then(text => {
    const script = document.createElement('script');
    script.type = "module"
    script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
    document.head.appendChild(script);
  });
}
"""
get_js_image = """
async (input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, landmark_direct_mode, strength, scale, seed, eta, image_file_live_opt) => {
  const canvasEl = document.getElementById("canvas-root");
  const imageData = canvasEl? canvasEl._data : null;
  if(image_file_live_opt === 'webcam'){
    input_image = imageData['image']
    landmark_direct_mode = true
  }
  return [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, landmark_direct_mode, strength, scale, seed, eta, image_file_live_opt]
}
"""


def draw_landmarks(image, landmarks, color="white", radius=2.5):
    draw = ImageDraw.Draw(image)
    for dot in landmarks:
        x, y = dot
        draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill=color)


def get_68landmarks_img(img):
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    faces = detector(gray)
    landmarks = []
    for face in faces:
        shape = predictor(gray, face)
        for i in range(68):
            x = shape.part(i).x
            y = shape.part(i).y
            landmarks.append((x, y))
    con_img = Image.new('RGB', (img.shape[1], img.shape[0]), color=(0, 0, 0))
    draw_landmarks(con_img, landmarks)
    con_img = np.array(con_img)
    return con_img


def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, landmark_direct_mode, strength, scale, seed, eta, image_file_live_opt="file"):
    input_image = input_image.convert('RGB')
    input_image = np.array(input_image)
    input_image = np.flip(input_image, axis=2)
    print('input_image.shape', input_image.shape)
    # Limit the number of samples to 2 for Spaces only
    num_samples = min(num_samples, 2)
    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        if landmark_direct_mode:
            detected_map = img
        else:
            detected_map = get_68landmarks_img(img)
        detected_map = HWC3(detected_map)

        control = torch.from_numpy(
            detected_map.copy()).float().to(device) / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        if seed == -1:
            seed = random.randint(0, 2**32 - 1)
        seed_everything(seed)

        if config.save_memory:
            model.low_vram_shift(is_diffusing=False)

        cond = {"c_concat": [control], "c_crossattn": [
            model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [
            model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if config.save_memory:
            model.low_vram_shift(is_diffusing=True)

        model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
            [strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if config.save_memory:
            model.low_vram_shift(is_diffusing=False)

        x_samples = model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c')
                     * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]

    return [255 - detected_map] + results


def toggle(choice):
    if choice == "file":
        return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
    elif choice == "webcam":
        return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)


block = gr.Blocks().queue()
with block:
    live_conditioning = gr.JSON(value={}, visible=False)
    with gr.Row():
        gr.Markdown("## Control Stable Diffusion with Face Landmarks")
    with gr.Row():
        with gr.Column():
            image_file_live_opt = gr.Radio(["file", "webcam"], value="file",
                                           label="How would you like to upload your image?")
            input_image = gr.Image(source="upload", visible=True, type="pil")
            canvas = gr.HTML(None, elem_id="canvas_html", visible=False)

            image_file_live_opt.change(fn=toggle,
                                       inputs=[image_file_live_opt],
                                       outputs=[input_image, canvas],
                                       queue=False)

            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(label="Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(
                    label="Images", minimum=1, maximum=2, value=1, step=1)
                image_resolution = gr.Slider(
                    label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
                strength = gr.Slider(
                    label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                guess_mode = gr.Checkbox(label='Guess Mode', value=False)
                landmark_direct_mode = gr.Checkbox(
                    label='Input Landmark Directly', value=False)
                ddim_steps = gr.Slider(
                    label="Steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale",
                                  minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                seed = gr.Slider(label="Seed", minimum=-1,
                                 maximum=2147483647, step=1, randomize=True)
                eta = gr.Number(label="eta (DDIM)", value=0.0)
                a_prompt = gr.Textbox(
                    label="Added Prompt", value='best quality, extremely detailed')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
        with gr.Column():
            result_gallery = gr.Gallery(
                label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution,
           ddim_steps, guess_mode, landmark_direct_mode, strength, scale, seed, eta]

    gr.Examples(fn=process, examples=[
        ["examples/image0.jpg", "a silly clown face", "best quality, extremely detailed",
            "cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", 1, 512, 20, False, False, 1.0, 9.0, -1, 0.0],
        ["examples/image1.png", "a photo of a woman wearing glasses", "best quality, extremely detailed",
            "cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", 1, 512, 20, False, False, 1.0, 9.0, -1, 0.0],
        ["examples/image2.png", "a silly portrait of man with head tilted and a beautiful hair on the side", "best quality, extremely detailed",
            "cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", 1, 512, 20, False, False, 1.0, 9.0, -1, 0.0],
        ["examples/image3.png", "portrait handsome men", "best quality, extremely detailed",
            "cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", 1, 512, 20, False, False, 1.0, 9.0, -1, 0.0],
        ["examples/image4.jpg", "a beautiful  woman looking at the sky", "best quality, extremely detailed",
            "cartoon, disfigured, bad art, deformed, poorly drawn, extra limbs, weird colors, blurry, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", 1, 512, 20, False, False, 1.0, 9.0, -1, 0.0],
    ], inputs=ips, outputs=[result_gallery], cache_examples=True)
    run_button.click(fn=process, inputs=ips + [image_file_live_opt],
                     outputs=[result_gallery], _js=get_js_image)
    block.load(None, None, None, _js=load_js)


block.launch()