File size: 1,158 Bytes
5ecde30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import faiss
import numpy as np  

def save_faiss_embeddings_index(embeddings, file_name):
    # Ensure embeddings are in float32 format
    if not isinstance(embeddings, np.ndarray):
        embeddings = embeddings.numpy()
    embeddings = embeddings.astype('float32')
    
    # Create a FAISS index
    index = faiss.IndexFlatL2(embeddings.shape[1])  # L2 distance
    index.add(embeddings)
    
    # Save the FAISS index
    faiss.write_index(index, file_name)    


def load_faiss_index(index_path):
    index = faiss.read_index(index_path)
    return index

def normalize_embeddings(embeddings):
    # Normalize embeddings
    embeddings = embeddings / np.linalg.norm(embeddings, axis=1)[:, None]
    return embeddings

def search_faiss_index(index, query_embedding, k=5):
    # Perform similarity search
    D, I = index.search(query_embedding, k)  # D: distances, I: indices
    return D, I


def Z_load_embeddings_and_index(file_name):
    # Load embeddings from .npy file
    embeddings = np.load(f"{file_name}_embeddings.npy")
    
    # Load FAISS index from .index file
    index = faiss.read_index(file_name)
    
    return embeddings, index