Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import argparse
|
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
import tempfile
|
|
|
5 |
import sys
|
6 |
import cv2
|
7 |
import gradio as gr
|
@@ -23,12 +24,22 @@ from hamer.models import HAMER
|
|
23 |
from hamer.utils import recursive_to
|
24 |
from hamer.utils.renderer import Renderer, cam_crop_to_full
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
#try:
|
34 |
# from vitpose_model import ViTPoseModel
|
@@ -57,35 +68,48 @@ model.eval()
|
|
57 |
|
58 |
|
59 |
# Load detector
|
60 |
-
from detectron2.config import LazyConfig
|
61 |
|
62 |
-
from hamer.utils.utils_detectron2 import DefaultPredictor_Lazy
|
63 |
|
64 |
-
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
|
65 |
-
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
|
66 |
-
for i in range(3):
|
67 |
-
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
|
68 |
-
detector = DefaultPredictor_Lazy(detectron2_cfg)
|
69 |
|
70 |
# Setup the renderer
|
71 |
renderer = Renderer(model_cfg, faces=model.mano.faces)
|
72 |
|
|
|
|
|
|
|
|
|
73 |
# keypoint detector
|
74 |
cpm = ViTPoseModel(device)
|
75 |
|
76 |
import numpy as np
|
77 |
|
78 |
-
def infer(in_pil_img, in_threshold=0.
|
|
|
|
|
79 |
|
80 |
open_cv_image = np.array(in_pil_img)
|
|
|
|
|
81 |
# Convert RGB to BGR
|
82 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
83 |
print("EEEEE", open_cv_image.shape)
|
84 |
-
det_out
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
# Detect human keypoints for each person
|
@@ -121,6 +145,9 @@ def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
|
|
121 |
|
122 |
boxes = np.stack(bboxes)
|
123 |
right = np.stack(is_right)
|
|
|
|
|
|
|
124 |
|
125 |
|
126 |
# Run HaMeR on all detected humans
|
@@ -136,11 +163,14 @@ def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
|
|
136 |
|
137 |
for batch in dataloader:
|
138 |
batch = recursive_to(batch, device)
|
|
|
139 |
with torch.no_grad():
|
140 |
out = model(batch)
|
141 |
|
142 |
multiplier = (2*batch['right']-1)
|
143 |
pred_cam = out['pred_cam']
|
|
|
|
|
144 |
pred_cam[:,1] = multiplier*pred_cam[:,1]
|
145 |
box_center = batch["box_center"].float()
|
146 |
box_size = batch["box_size"].float()
|
@@ -204,9 +234,15 @@ def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
|
|
204 |
|
205 |
with gr.Blocks(title="HaMeR", css=".gradio-container") as demo:
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
You can also download the .obj files for each hand reconstruction.</div>""")
|
211 |
|
212 |
with gr.Row():
|
@@ -228,10 +264,9 @@ with gr.Blocks(title="HaMeR", css=".gradio-container") as demo:
|
|
228 |
['/home/user/app/assets/test1.jpg'],
|
229 |
['/home/user/app/assets/test2.jpg'],
|
230 |
['/home/user/app/assets/test3.jpg'],
|
231 |
-
['/home/user/app/assets/test4.jpg'],
|
232 |
['/home/user/app/assets/test5.jpg'],
|
233 |
],
|
234 |
-
inputs=
|
235 |
|
236 |
|
237 |
#demo.queue()
|
|
|
2 |
import os
|
3 |
from pathlib import Path
|
4 |
import tempfile
|
5 |
+
import tarfile
|
6 |
import sys
|
7 |
import cv2
|
8 |
import gradio as gr
|
|
|
24 |
from hamer.utils import recursive_to
|
25 |
from hamer.utils.renderer import Renderer, cam_crop_to_full
|
26 |
|
27 |
+
def extract_tar() -> None:
|
28 |
+
if Path('mmdet_configs/configs').exists():
|
29 |
+
return
|
30 |
+
with tarfile.open('mmdet_configs/configs.tar') as f:
|
31 |
+
f.extractall('mmdet_configs')
|
32 |
+
|
33 |
+
extract_tar()
|
34 |
+
|
35 |
+
#from vitpose_model import DetModel
|
36 |
+
|
37 |
+
#try:
|
38 |
+
# import detectron2
|
39 |
+
#except:
|
40 |
+
# import os
|
41 |
+
# os.system('pip install --upgrade pip')
|
42 |
+
# os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
43 |
|
44 |
#try:
|
45 |
# from vitpose_model import ViTPoseModel
|
|
|
68 |
|
69 |
|
70 |
# Load detector
|
71 |
+
#from detectron2.config import LazyConfig
|
72 |
|
73 |
+
#from hamer.utils.utils_detectron2 import DefaultPredictor_Lazy
|
74 |
|
75 |
+
#detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
|
76 |
+
#detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
|
77 |
+
#for i in range(3):
|
78 |
+
# detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
|
79 |
+
#detector = DefaultPredictor_Lazy(detectron2_cfg)
|
80 |
|
81 |
# Setup the renderer
|
82 |
renderer = Renderer(model_cfg, faces=model.mano.faces)
|
83 |
|
84 |
+
# mmdet detector
|
85 |
+
#det_model = DetModel()
|
86 |
+
det_model = torch.hub.load('ultralytics/yolov5', 'yolov5x6')
|
87 |
+
|
88 |
# keypoint detector
|
89 |
cpm = ViTPoseModel(device)
|
90 |
|
91 |
import numpy as np
|
92 |
|
93 |
+
def infer(in_pil_img, in_threshold=0.4, out_pil_img=None):
|
94 |
+
|
95 |
+
print(in_threshold)
|
96 |
|
97 |
open_cv_image = np.array(in_pil_img)
|
98 |
+
det_out = det_model(open_cv_image)
|
99 |
+
det_out = det_out.xyxy[0]
|
100 |
# Convert RGB to BGR
|
101 |
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
102 |
print("EEEEE", open_cv_image.shape)
|
103 |
+
print(det_out)
|
104 |
+
#det_out = detector(open_cv_image)
|
105 |
+
scores = det_out[:,4]
|
106 |
+
det_instances = det_out[:,5]
|
107 |
+
print(scores)
|
108 |
+
print(det_instances)
|
109 |
+
valid_idx = (det_instances==0) & (scores > in_threshold)
|
110 |
+
print(valid_idx)
|
111 |
+
pred_bboxes=det_out[valid_idx,:4].cpu().numpy()
|
112 |
+
pred_scores=scores[valid_idx].cpu().numpy()
|
113 |
|
114 |
|
115 |
# Detect human keypoints for each person
|
|
|
145 |
|
146 |
boxes = np.stack(bboxes)
|
147 |
right = np.stack(is_right)
|
148 |
+
print(boxes)
|
149 |
+
print(right)
|
150 |
+
print(open_cv_image)
|
151 |
|
152 |
|
153 |
# Run HaMeR on all detected humans
|
|
|
163 |
|
164 |
for batch in dataloader:
|
165 |
batch = recursive_to(batch, device)
|
166 |
+
print(batch['img'])
|
167 |
with torch.no_grad():
|
168 |
out = model(batch)
|
169 |
|
170 |
multiplier = (2*batch['right']-1)
|
171 |
pred_cam = out['pred_cam']
|
172 |
+
print(out['pred_vertices'])
|
173 |
+
print(pred_cam)
|
174 |
pred_cam[:,1] = multiplier*pred_cam[:,1]
|
175 |
box_center = batch["box_center"].float()
|
176 |
box_size = batch["box_size"].float()
|
|
|
234 |
|
235 |
with gr.Blocks(title="HaMeR", css=".gradio-container") as demo:
|
236 |
|
237 |
+
#title="HaMeR"
|
238 |
+
#description="Gradio Demo for HaMeR."
|
239 |
+
|
240 |
+
#gr.HTML("""<h1>HaMeR</h1>""")
|
241 |
+
#gr.HTML("""<h3>Gradio Demo for HaMeR. You can select an </h3>""")
|
242 |
+
|
243 |
+
gr.HTML("""<div style="font-weight:bold; text-align:center; font-size: 30px;">HaMeR</div>""")
|
244 |
+
gr.HTML("""<div style="text-align:left; font-size: 20px;">Demo for HaMeR. You can drop an image at the top-left panel
|
245 |
+
(or select one of the examples) and you will get the 3D reconstructions of the detected hands on the right.
|
246 |
You can also download the .obj files for each hand reconstruction.</div>""")
|
247 |
|
248 |
with gr.Row():
|
|
|
264 |
['/home/user/app/assets/test1.jpg'],
|
265 |
['/home/user/app/assets/test2.jpg'],
|
266 |
['/home/user/app/assets/test3.jpg'],
|
|
|
267 |
['/home/user/app/assets/test5.jpg'],
|
268 |
],
|
269 |
+
inputs=input_image)
|
270 |
|
271 |
|
272 |
#demo.queue()
|