HaMeR / mmcv_custom /apex_runner /apex_iter_based_runner.py
geopavlakos's picture
Initial commit
d7a991a
raw
history blame
3.88 kB
# Copyright (c) Open-MMLab. All rights reserved.
import os.path as osp
import platform
import shutil
import torch
from torch.optim import Optimizer
import mmcv
from mmcv.runner import RUNNERS, IterBasedRunner
from .checkpoint import save_checkpoint
try:
import apex
except:
print('apex is not installed')
@RUNNERS.register_module()
class IterBasedRunnerAmp(IterBasedRunner):
"""Iteration-based Runner with AMP support.
This runner train models iteration by iteration.
"""
def save_checkpoint(self,
out_dir,
filename_tmpl='iter_{}.pth',
meta=None,
save_optimizer=True,
create_symlink=False):
"""Save checkpoint to file.
Args:
out_dir (str): Directory to save checkpoint files.
filename_tmpl (str, optional): Checkpoint file template.
Defaults to 'iter_{}.pth'.
meta (dict, optional): Metadata to be saved in checkpoint.
Defaults to None.
save_optimizer (bool, optional): Whether save optimizer.
Defaults to True.
create_symlink (bool, optional): Whether create symlink to the
latest checkpoint file. Defaults to True.
"""
if meta is None:
meta = dict(iter=self.iter + 1, epoch=self.epoch + 1)
elif isinstance(meta, dict):
meta.update(iter=self.iter + 1, epoch=self.epoch + 1)
else:
raise TypeError(
f'meta should be a dict or None, but got {type(meta)}')
if self.meta is not None:
meta.update(self.meta)
filename = filename_tmpl.format(self.iter + 1)
filepath = osp.join(out_dir, filename)
optimizer = self.optimizer if save_optimizer else None
save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta)
# in some environments, `os.symlink` is not supported, you may need to
# set `create_symlink` to False
# if create_symlink:
# dst_file = osp.join(out_dir, 'latest.pth')
# if platform.system() != 'Windows':
# mmcv.symlink(filename, dst_file)
# else:
# shutil.copy(filepath, dst_file)
def resume(self,
checkpoint,
resume_optimizer=True,
map_location='default'):
if map_location == 'default':
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
checkpoint = self.load_checkpoint(
checkpoint,
map_location=lambda storage, loc: storage.cuda(device_id))
else:
checkpoint = self.load_checkpoint(checkpoint)
else:
checkpoint = self.load_checkpoint(
checkpoint, map_location=map_location)
self._epoch = checkpoint['meta']['epoch']
self._iter = checkpoint['meta']['iter']
self._inner_iter = checkpoint['meta']['iter']
if 'optimizer' in checkpoint and resume_optimizer:
if isinstance(self.optimizer, Optimizer):
self.optimizer.load_state_dict(checkpoint['optimizer'])
elif isinstance(self.optimizer, dict):
for k in self.optimizer.keys():
self.optimizer[k].load_state_dict(
checkpoint['optimizer'][k])
else:
raise TypeError(
'Optimizer should be dict or torch.optim.Optimizer '
f'but got {type(self.optimizer)}')
if 'amp' in checkpoint:
apex.amp.load_state_dict(checkpoint['amp'])
self.logger.info('load amp state dict')
self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}')