HaMeR / app.py
geopavlakos's picture
Update app.py
40f8164 verified
raw
history blame
8.93 kB
import argparse
import os
from pathlib import Path
import tempfile
import sys
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
# print file path
print(os.path.abspath(__file__))
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
os.system('pip install /home/user/app/pyrender')
sys.path.append('/home/user/app/pyrender')
from hamer.configs import get_config
from hamer.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
ViTDetDataset)
from hamer.models import HAMER
from hamer.utils import recursive_to
from hamer.utils.renderer import Renderer, cam_crop_to_full
try:
import detectron2
except:
import os
os.system('pip install --upgrade pip')
os.system('pip install git+https://github.com/facebookresearch/detectron2.git@b7ff9466d174fbb7061ff6d3773cd9c372a8e56f')
#try:
# from vitpose_model import ViTPoseModel
#except:
# os.system('pip install -v -e /home/user/app/vendor/ViTPose')
# from vitpose_model import ViTPoseModel
from vitpose_model import ViTPoseModel
OUT_FOLDER = 'demo_out'
os.makedirs(OUT_FOLDER, exist_ok=True)
# Setup HaMeR model
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
DEFAULT_CHECKPOINT='_DATA/hamer_ckpts/checkpoints/hamer.ckpt'
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
model_cfg = get_config(model_cfg)
# Override some config values, to crop bbox correctly
if (model_cfg.MODEL.BACKBONE.TYPE == 'vit') and ('BBOX_SHAPE' not in model_cfg.MODEL):
model_cfg.defrost()
assert model_cfg.MODEL.IMAGE_SIZE == 256, f"MODEL.IMAGE_SIZE ({model_cfg.MODEL.IMAGE_SIZE}) should be 256 for ViT backbone"
model_cfg.MODEL.BBOX_SHAPE = [192,256]
model_cfg.freeze()
model = HAMER.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
model.eval()
# Load detector
from detectron2.config import LazyConfig
from hamer.utils.utils_detectron2 import DefaultPredictor_Lazy
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
for i in range(3):
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
detector = DefaultPredictor_Lazy(detectron2_cfg)
# Setup the renderer
renderer = Renderer(model_cfg, faces=model.mano.faces)
# keypoint detector
cpm = ViTPoseModel(device)
import numpy as np
def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
open_cv_image = np.array(in_pil_img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
print("EEEEE", open_cv_image.shape)
det_out = detector(open_cv_image)
det_instances = det_out['instances']
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold)
pred_bboxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
pred_scores=det_instances.scores[valid_idx].cpu().numpy()
# Detect human keypoints for each person
vitposes_out = cpm.predict_pose(
open_cv_image,
[np.concatenate([pred_bboxes, pred_scores[:, None]], axis=1)],
)
bboxes = []
is_right = []
# Use hands based on hand keypoint detections
for vitposes in vitposes_out:
left_hand_keyp = vitposes['keypoints'][-42:-21]
right_hand_keyp = vitposes['keypoints'][-21:]
# Rejecting not confident detections (this could be improved)
keyp = left_hand_keyp
valid = keyp[:,2] > 0.5
if sum(valid) > 3:
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
bboxes.append(bbox)
is_right.append(0)
keyp = right_hand_keyp
valid = keyp[:,2] > 0.5
if sum(valid) > 3:
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
bboxes.append(bbox)
is_right.append(1)
if len(bboxes) == 0:
return None, []
boxes = np.stack(bboxes)
right = np.stack(is_right)
# Run HaMeR on all detected humans
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes, right)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
all_verts = []
all_cam_t = []
all_right = []
all_mesh_paths = []
temp_name = next(tempfile._get_candidate_names())
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = model(batch)
multiplier = (2*batch['right']-1)
pred_cam = out['pred_cam']
pred_cam[:,1] = multiplier*pred_cam[:,1]
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
multiplier = (2*batch['right']-1)
render_size = img_size
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size, scaled_focal_length).detach().cpu().numpy()
# Render the result
batch_size = batch['img'].shape[0]
for n in range(batch_size):
# Get filename from path img_path
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
person_id = int(batch['personid'][n])
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
input_patch = input_patch.permute(1,2,0).numpy()
verts = out['pred_vertices'][n].detach().cpu().numpy()
is_right = batch['right'][n].cpu().numpy()
verts[:,0] = (2*is_right-1)*verts[:,0]
cam_t = pred_cam_t[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
all_right.append(is_right)
# Save all meshes to disk
# if args.save_mesh:
if True:
camera_translation = cam_t.copy()
tmesh = renderer.vertices_to_trimesh(verts, camera_translation, LIGHT_BLUE, is_right=is_right)
temp_path = os.path.join(f'{OUT_FOLDER}/{temp_name}_{person_id}.obj')
tmesh.export(temp_path)
all_mesh_paths.append(temp_path)
# Render front view
if len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
focal_length=scaled_focal_length,
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], is_right=all_right, **misc_args)
# Overlay image
input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
# convert to PIL image
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8))
return out_pil_img, all_mesh_paths
else:
return None, []
with gr.Blocks(title="HaMeR", css=".gradio-container") as demo:
gr.HTML("""<div style="font-weight:bold; text-align:center; font-size: 30px;">HaMeR Demo</div>""")
gr.HTML("""<div style="text-align:left; font-size: 20px;">You can drop an image at the top-left panel (or select one of the examples)
and you will get the 3D reconstructions of the detected hands on the right.
You can also download the .obj files for each hand reconstruction.</div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="pil")
with gr.Column():
output_image = gr.Image(label="Reconstructions", type="pil")
output_meshes = gr.File(label="3D meshes")
gr.HTML("""<br/>""")
with gr.Row():
threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
send_btn = gr.Button("Infer")
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image, output_meshes])
# with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/test1.jpg'],
['/home/user/app/assets/test2.jpg'],
['/home/user/app/assets/test3.jpg'],
['/home/user/app/assets/test4.jpg'],
['/home/user/app/assets/test5.jpg'],
],
inputs=[input_image, 0.6])
#demo.queue()
demo.launch(debug=True)
### EOF ###