HaMeR / mmpose /datasets /pipelines /shared_transform.py
geopavlakos's picture
Initial commit
d7a991a
raw
history blame
16.4 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections.abc import Sequence
import mmcv
import numpy as np
from mmcv.parallel import DataContainer as DC
from mmcv.utils import build_from_cfg
from numpy import random
from torchvision.transforms import functional as F
from ..builder import PIPELINES
try:
import albumentations
except ImportError:
albumentations = None
@PIPELINES.register_module()
class ToTensor:
"""Transform image to Tensor.
Required key: 'img'. Modifies key: 'img'.
Args:
results (dict): contain all information about training.
"""
def __call__(self, results):
if isinstance(results['img'], (list, tuple)):
results['img'] = [F.to_tensor(img) for img in results['img']]
else:
results['img'] = F.to_tensor(results['img'])
return results
@PIPELINES.register_module()
class NormalizeTensor:
"""Normalize the Tensor image (CxHxW), with mean and std.
Required key: 'img'. Modifies key: 'img'.
Args:
mean (list[float]): Mean values of 3 channels.
std (list[float]): Std values of 3 channels.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, results):
if isinstance(results['img'], (list, tuple)):
results['img'] = [
F.normalize(img, mean=self.mean, std=self.std)
for img in results['img']
]
else:
results['img'] = F.normalize(
results['img'], mean=self.mean, std=self.std)
return results
@PIPELINES.register_module()
class Compose:
"""Compose a data pipeline with a sequence of transforms.
Args:
transforms (list[dict | callable]): Either config
dicts of transforms or transform objects.
"""
def __init__(self, transforms):
assert isinstance(transforms, Sequence)
self.transforms = []
for transform in transforms:
if isinstance(transform, dict):
transform = build_from_cfg(transform, PIPELINES)
self.transforms.append(transform)
elif callable(transform):
self.transforms.append(transform)
else:
raise TypeError('transform must be callable or a dict, but got'
f' {type(transform)}')
def __call__(self, data):
"""Call function to apply transforms sequentially.
Args:
data (dict): A result dict contains the data to transform.
Returns:
dict: Transformed data.
"""
for t in self.transforms:
data = t(data)
if data is None:
return None
return data
def __repr__(self):
"""Compute the string representation."""
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += f'\n {t}'
format_string += '\n)'
return format_string
@PIPELINES.register_module()
class Collect:
"""Collect data from the loader relevant to the specific task.
This keeps the items in `keys` as it is, and collect items in `meta_keys`
into a meta item called `meta_name`.This is usually the last stage of the
data loader pipeline.
For example, when keys='imgs', meta_keys=('filename', 'label',
'original_shape'), meta_name='img_metas', the results will be a dict with
keys 'imgs' and 'img_metas', where 'img_metas' is a DataContainer of
another dict with keys 'filename', 'label', 'original_shape'.
Args:
keys (Sequence[str|tuple]): Required keys to be collected. If a tuple
(key, key_new) is given as an element, the item retrieved by key will
be renamed as key_new in collected data.
meta_name (str): The name of the key that contains meta information.
This key is always populated. Default: "img_metas".
meta_keys (Sequence[str|tuple]): Keys that are collected under
meta_name. The contents of the `meta_name` dictionary depends
on `meta_keys`.
"""
def __init__(self, keys, meta_keys, meta_name='img_metas'):
self.keys = keys
self.meta_keys = meta_keys
self.meta_name = meta_name
def __call__(self, results):
"""Performs the Collect formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
if 'ann_info' in results:
results.update(results['ann_info'])
data = {}
for key in self.keys:
if isinstance(key, tuple):
assert len(key) == 2
key_src, key_tgt = key[:2]
else:
key_src = key_tgt = key
data[key_tgt] = results[key_src]
meta = {}
if len(self.meta_keys) != 0:
for key in self.meta_keys:
if isinstance(key, tuple):
assert len(key) == 2
key_src, key_tgt = key[:2]
else:
key_src = key_tgt = key
meta[key_tgt] = results[key_src]
if 'bbox_id' in results:
meta['bbox_id'] = results['bbox_id']
data[self.meta_name] = DC(meta, cpu_only=True)
return data
def __repr__(self):
"""Compute the string representation."""
return (f'{self.__class__.__name__}('
f'keys={self.keys}, meta_keys={self.meta_keys})')
@PIPELINES.register_module()
class Albumentation:
"""Albumentation augmentation (pixel-level transforms only). Adds custom
pixel-level transformations from Albumentations library. Please visit
`https://albumentations.readthedocs.io` to get more information.
Note: we only support pixel-level transforms.
Please visit `https://github.com/albumentations-team/`
`albumentations#pixel-level-transforms`
to get more information about pixel-level transforms.
An example of ``transforms`` is as followed:
.. code-block:: python
[
dict(
type='RandomBrightnessContrast',
brightness_limit=[0.1, 0.3],
contrast_limit=[0.1, 0.3],
p=0.2),
dict(type='ChannelShuffle', p=0.1),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.1),
]
Args:
transforms (list[dict]): A list of Albumentation transformations
keymap (dict): Contains {'input key':'albumentation-style key'},
e.g., {'img': 'image'}.
"""
def __init__(self, transforms, keymap=None):
if albumentations is None:
raise RuntimeError('albumentations is not installed')
self.transforms = transforms
self.filter_lost_elements = False
self.aug = albumentations.Compose(
[self.albu_builder(t) for t in self.transforms])
if not keymap:
self.keymap_to_albu = {
'img': 'image',
}
else:
self.keymap_to_albu = keymap
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}
def albu_builder(self, cfg):
"""Import a module from albumentations.
It resembles some of :func:`build_from_cfg` logic.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
Returns:
obj: The constructed object.
"""
assert isinstance(cfg, dict) and 'type' in cfg
args = cfg.copy()
obj_type = args.pop('type')
if mmcv.is_str(obj_type):
if albumentations is None:
raise RuntimeError('albumentations is not installed')
if not hasattr(albumentations.augmentations.transforms, obj_type):
warnings.warn('{obj_type} is not pixel-level transformations. '
'Please use with caution.')
obj_cls = getattr(albumentations, obj_type)
else:
raise TypeError(f'type must be a str, but got {type(obj_type)}')
if 'transforms' in args:
args['transforms'] = [
self.albu_builder(transform)
for transform in args['transforms']
]
return obj_cls(**args)
@staticmethod
def mapper(d, keymap):
"""Dictionary mapper.
Renames keys according to keymap provided.
Args:
d (dict): old dict
keymap (dict): {'old_key':'new_key'}
Returns:
dict: new dict.
"""
updated_dict = {keymap.get(k, k): v for k, v in d.items()}
return updated_dict
def __call__(self, results):
# dict to albumentations format
results = self.mapper(results, self.keymap_to_albu)
results = self.aug(**results)
# back to the original format
results = self.mapper(results, self.keymap_back)
return results
def __repr__(self):
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
return repr_str
@PIPELINES.register_module()
class PhotometricDistortion:
"""Apply photometric distortion to image sequentially, every transformation
is applied with a probability of 0.5. The position of random contrast is in
second or second to last.
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
8. randomly swap channels
Args:
brightness_delta (int): delta of brightness.
contrast_range (tuple): range of contrast.
saturation_range (tuple): range of saturation.
hue_delta (int): delta of hue.
"""
def __init__(self,
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18):
self.brightness_delta = brightness_delta
self.contrast_lower, self.contrast_upper = contrast_range
self.saturation_lower, self.saturation_upper = saturation_range
self.hue_delta = hue_delta
def convert(self, img, alpha=1, beta=0):
"""Multiple with alpha and add beta with clip."""
img = img.astype(np.float32) * alpha + beta
img = np.clip(img, 0, 255)
return img.astype(np.uint8)
def brightness(self, img):
"""Brightness distortion."""
if random.randint(2):
return self.convert(
img,
beta=random.uniform(-self.brightness_delta,
self.brightness_delta))
return img
def contrast(self, img):
"""Contrast distortion."""
if random.randint(2):
return self.convert(
img,
alpha=random.uniform(self.contrast_lower, self.contrast_upper))
return img
def saturation(self, img):
# Apply saturation distortion to hsv-formatted img
img[:, :, 1] = self.convert(
img[:, :, 1],
alpha=random.uniform(self.saturation_lower, self.saturation_upper))
return img
def hue(self, img):
# Apply hue distortion to hsv-formatted img
img[:, :, 0] = (img[:, :, 0].astype(int) +
random.randint(-self.hue_delta, self.hue_delta)) % 180
return img
def swap_channels(self, img):
# Apply channel swap
if random.randint(2):
img = img[..., random.permutation(3)]
return img
def __call__(self, results):
"""Call function to perform photometric distortion on images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images distorted.
"""
img = results['img']
# random brightness
img = self.brightness(img)
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
mode = random.randint(2)
if mode == 1:
img = self.contrast(img)
hsv_mode = random.randint(4)
if hsv_mode:
# random saturation/hue distortion
img = mmcv.bgr2hsv(img)
if hsv_mode == 1 or hsv_mode == 3:
img = self.saturation(img)
if hsv_mode == 2 or hsv_mode == 3:
img = self.hue(img)
img = mmcv.hsv2bgr(img)
# random contrast
if mode == 0:
img = self.contrast(img)
# randomly swap channels
self.swap_channels(img)
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += (f'(brightness_delta={self.brightness_delta}, '
f'contrast_range=({self.contrast_lower}, '
f'{self.contrast_upper}), '
f'saturation_range=({self.saturation_lower}, '
f'{self.saturation_upper}), '
f'hue_delta={self.hue_delta})')
return repr_str
@PIPELINES.register_module()
class MultiItemProcess:
"""Process each item and merge multi-item results to lists.
Args:
pipeline (dict): Dictionary to construct pipeline for a single item.
"""
def __init__(self, pipeline):
self.pipeline = Compose(pipeline)
def __call__(self, results):
results_ = {}
for idx, result in results.items():
single_result = self.pipeline(result)
for k, v in single_result.items():
if k in results_:
results_[k].append(v)
else:
results_[k] = [v]
return results_
@PIPELINES.register_module()
class DiscardDuplicatedItems:
def __init__(self, keys_list):
"""Discard duplicated single-item results.
Args:
keys_list (list): List of keys that need to be deduplicate.
"""
self.keys_list = keys_list
def __call__(self, results):
for k, v in results.items():
if k in self.keys_list:
assert isinstance(v, Sequence)
results[k] = v[0]
return results
@PIPELINES.register_module()
class MultitaskGatherTarget:
"""Gather the targets for multitask heads.
Args:
pipeline_list (list[list]): List of pipelines for all heads.
pipeline_indices (list[int]): Pipeline index of each head.
"""
def __init__(self,
pipeline_list,
pipeline_indices=None,
keys=('target', 'target_weight')):
self.keys = keys
self.pipelines = []
for pipeline in pipeline_list:
self.pipelines.append(Compose(pipeline))
if pipeline_indices is None:
self.pipeline_indices = list(range(len(pipeline_list)))
else:
self.pipeline_indices = pipeline_indices
def __call__(self, results):
# generate target and target weights using all pipelines
pipeline_outputs = []
for pipeline in self.pipelines:
pipeline_output = pipeline(results)
pipeline_outputs.append(pipeline_output.copy())
for key in self.keys:
result_key = []
for ind in self.pipeline_indices:
result_key.append(pipeline_outputs[ind].get(key, None))
results[key] = result_key
return results
@PIPELINES.register_module()
class RenameKeys:
"""Rename the keys.
Args:
key_pairs (Sequence[tuple]): Required keys to be renamed.
If a tuple (key_src, key_tgt) is given as an element,
the item retrieved by key_src will be renamed as key_tgt.
"""
def __init__(self, key_pairs):
self.key_pairs = key_pairs
def __call__(self, results):
"""Rename keys."""
for key_pair in self.key_pairs:
assert len(key_pair) == 2
key_src, key_tgt = key_pair
results[key_tgt] = results.pop(key_src)
return results