Spaces:
Build error
Build error
File size: 16,442 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections.abc import Sequence
import mmcv
import numpy as np
from mmcv.parallel import DataContainer as DC
from mmcv.utils import build_from_cfg
from numpy import random
from torchvision.transforms import functional as F
from ..builder import PIPELINES
try:
import albumentations
except ImportError:
albumentations = None
@PIPELINES.register_module()
class ToTensor:
"""Transform image to Tensor.
Required key: 'img'. Modifies key: 'img'.
Args:
results (dict): contain all information about training.
"""
def __call__(self, results):
if isinstance(results['img'], (list, tuple)):
results['img'] = [F.to_tensor(img) for img in results['img']]
else:
results['img'] = F.to_tensor(results['img'])
return results
@PIPELINES.register_module()
class NormalizeTensor:
"""Normalize the Tensor image (CxHxW), with mean and std.
Required key: 'img'. Modifies key: 'img'.
Args:
mean (list[float]): Mean values of 3 channels.
std (list[float]): Std values of 3 channels.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, results):
if isinstance(results['img'], (list, tuple)):
results['img'] = [
F.normalize(img, mean=self.mean, std=self.std)
for img in results['img']
]
else:
results['img'] = F.normalize(
results['img'], mean=self.mean, std=self.std)
return results
@PIPELINES.register_module()
class Compose:
"""Compose a data pipeline with a sequence of transforms.
Args:
transforms (list[dict | callable]): Either config
dicts of transforms or transform objects.
"""
def __init__(self, transforms):
assert isinstance(transforms, Sequence)
self.transforms = []
for transform in transforms:
if isinstance(transform, dict):
transform = build_from_cfg(transform, PIPELINES)
self.transforms.append(transform)
elif callable(transform):
self.transforms.append(transform)
else:
raise TypeError('transform must be callable or a dict, but got'
f' {type(transform)}')
def __call__(self, data):
"""Call function to apply transforms sequentially.
Args:
data (dict): A result dict contains the data to transform.
Returns:
dict: Transformed data.
"""
for t in self.transforms:
data = t(data)
if data is None:
return None
return data
def __repr__(self):
"""Compute the string representation."""
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += f'\n {t}'
format_string += '\n)'
return format_string
@PIPELINES.register_module()
class Collect:
"""Collect data from the loader relevant to the specific task.
This keeps the items in `keys` as it is, and collect items in `meta_keys`
into a meta item called `meta_name`.This is usually the last stage of the
data loader pipeline.
For example, when keys='imgs', meta_keys=('filename', 'label',
'original_shape'), meta_name='img_metas', the results will be a dict with
keys 'imgs' and 'img_metas', where 'img_metas' is a DataContainer of
another dict with keys 'filename', 'label', 'original_shape'.
Args:
keys (Sequence[str|tuple]): Required keys to be collected. If a tuple
(key, key_new) is given as an element, the item retrieved by key will
be renamed as key_new in collected data.
meta_name (str): The name of the key that contains meta information.
This key is always populated. Default: "img_metas".
meta_keys (Sequence[str|tuple]): Keys that are collected under
meta_name. The contents of the `meta_name` dictionary depends
on `meta_keys`.
"""
def __init__(self, keys, meta_keys, meta_name='img_metas'):
self.keys = keys
self.meta_keys = meta_keys
self.meta_name = meta_name
def __call__(self, results):
"""Performs the Collect formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
if 'ann_info' in results:
results.update(results['ann_info'])
data = {}
for key in self.keys:
if isinstance(key, tuple):
assert len(key) == 2
key_src, key_tgt = key[:2]
else:
key_src = key_tgt = key
data[key_tgt] = results[key_src]
meta = {}
if len(self.meta_keys) != 0:
for key in self.meta_keys:
if isinstance(key, tuple):
assert len(key) == 2
key_src, key_tgt = key[:2]
else:
key_src = key_tgt = key
meta[key_tgt] = results[key_src]
if 'bbox_id' in results:
meta['bbox_id'] = results['bbox_id']
data[self.meta_name] = DC(meta, cpu_only=True)
return data
def __repr__(self):
"""Compute the string representation."""
return (f'{self.__class__.__name__}('
f'keys={self.keys}, meta_keys={self.meta_keys})')
@PIPELINES.register_module()
class Albumentation:
"""Albumentation augmentation (pixel-level transforms only). Adds custom
pixel-level transformations from Albumentations library. Please visit
`https://albumentations.readthedocs.io` to get more information.
Note: we only support pixel-level transforms.
Please visit `https://github.com/albumentations-team/`
`albumentations#pixel-level-transforms`
to get more information about pixel-level transforms.
An example of ``transforms`` is as followed:
.. code-block:: python
[
dict(
type='RandomBrightnessContrast',
brightness_limit=[0.1, 0.3],
contrast_limit=[0.1, 0.3],
p=0.2),
dict(type='ChannelShuffle', p=0.1),
dict(
type='OneOf',
transforms=[
dict(type='Blur', blur_limit=3, p=1.0),
dict(type='MedianBlur', blur_limit=3, p=1.0)
],
p=0.1),
]
Args:
transforms (list[dict]): A list of Albumentation transformations
keymap (dict): Contains {'input key':'albumentation-style key'},
e.g., {'img': 'image'}.
"""
def __init__(self, transforms, keymap=None):
if albumentations is None:
raise RuntimeError('albumentations is not installed')
self.transforms = transforms
self.filter_lost_elements = False
self.aug = albumentations.Compose(
[self.albu_builder(t) for t in self.transforms])
if not keymap:
self.keymap_to_albu = {
'img': 'image',
}
else:
self.keymap_to_albu = keymap
self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}
def albu_builder(self, cfg):
"""Import a module from albumentations.
It resembles some of :func:`build_from_cfg` logic.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
Returns:
obj: The constructed object.
"""
assert isinstance(cfg, dict) and 'type' in cfg
args = cfg.copy()
obj_type = args.pop('type')
if mmcv.is_str(obj_type):
if albumentations is None:
raise RuntimeError('albumentations is not installed')
if not hasattr(albumentations.augmentations.transforms, obj_type):
warnings.warn('{obj_type} is not pixel-level transformations. '
'Please use with caution.')
obj_cls = getattr(albumentations, obj_type)
else:
raise TypeError(f'type must be a str, but got {type(obj_type)}')
if 'transforms' in args:
args['transforms'] = [
self.albu_builder(transform)
for transform in args['transforms']
]
return obj_cls(**args)
@staticmethod
def mapper(d, keymap):
"""Dictionary mapper.
Renames keys according to keymap provided.
Args:
d (dict): old dict
keymap (dict): {'old_key':'new_key'}
Returns:
dict: new dict.
"""
updated_dict = {keymap.get(k, k): v for k, v in d.items()}
return updated_dict
def __call__(self, results):
# dict to albumentations format
results = self.mapper(results, self.keymap_to_albu)
results = self.aug(**results)
# back to the original format
results = self.mapper(results, self.keymap_back)
return results
def __repr__(self):
repr_str = self.__class__.__name__ + f'(transforms={self.transforms})'
return repr_str
@PIPELINES.register_module()
class PhotometricDistortion:
"""Apply photometric distortion to image sequentially, every transformation
is applied with a probability of 0.5. The position of random contrast is in
second or second to last.
1. random brightness
2. random contrast (mode 0)
3. convert color from BGR to HSV
4. random saturation
5. random hue
6. convert color from HSV to BGR
7. random contrast (mode 1)
8. randomly swap channels
Args:
brightness_delta (int): delta of brightness.
contrast_range (tuple): range of contrast.
saturation_range (tuple): range of saturation.
hue_delta (int): delta of hue.
"""
def __init__(self,
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18):
self.brightness_delta = brightness_delta
self.contrast_lower, self.contrast_upper = contrast_range
self.saturation_lower, self.saturation_upper = saturation_range
self.hue_delta = hue_delta
def convert(self, img, alpha=1, beta=0):
"""Multiple with alpha and add beta with clip."""
img = img.astype(np.float32) * alpha + beta
img = np.clip(img, 0, 255)
return img.astype(np.uint8)
def brightness(self, img):
"""Brightness distortion."""
if random.randint(2):
return self.convert(
img,
beta=random.uniform(-self.brightness_delta,
self.brightness_delta))
return img
def contrast(self, img):
"""Contrast distortion."""
if random.randint(2):
return self.convert(
img,
alpha=random.uniform(self.contrast_lower, self.contrast_upper))
return img
def saturation(self, img):
# Apply saturation distortion to hsv-formatted img
img[:, :, 1] = self.convert(
img[:, :, 1],
alpha=random.uniform(self.saturation_lower, self.saturation_upper))
return img
def hue(self, img):
# Apply hue distortion to hsv-formatted img
img[:, :, 0] = (img[:, :, 0].astype(int) +
random.randint(-self.hue_delta, self.hue_delta)) % 180
return img
def swap_channels(self, img):
# Apply channel swap
if random.randint(2):
img = img[..., random.permutation(3)]
return img
def __call__(self, results):
"""Call function to perform photometric distortion on images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Result dict with images distorted.
"""
img = results['img']
# random brightness
img = self.brightness(img)
# mode == 0 --> do random contrast first
# mode == 1 --> do random contrast last
mode = random.randint(2)
if mode == 1:
img = self.contrast(img)
hsv_mode = random.randint(4)
if hsv_mode:
# random saturation/hue distortion
img = mmcv.bgr2hsv(img)
if hsv_mode == 1 or hsv_mode == 3:
img = self.saturation(img)
if hsv_mode == 2 or hsv_mode == 3:
img = self.hue(img)
img = mmcv.hsv2bgr(img)
# random contrast
if mode == 0:
img = self.contrast(img)
# randomly swap channels
self.swap_channels(img)
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += (f'(brightness_delta={self.brightness_delta}, '
f'contrast_range=({self.contrast_lower}, '
f'{self.contrast_upper}), '
f'saturation_range=({self.saturation_lower}, '
f'{self.saturation_upper}), '
f'hue_delta={self.hue_delta})')
return repr_str
@PIPELINES.register_module()
class MultiItemProcess:
"""Process each item and merge multi-item results to lists.
Args:
pipeline (dict): Dictionary to construct pipeline for a single item.
"""
def __init__(self, pipeline):
self.pipeline = Compose(pipeline)
def __call__(self, results):
results_ = {}
for idx, result in results.items():
single_result = self.pipeline(result)
for k, v in single_result.items():
if k in results_:
results_[k].append(v)
else:
results_[k] = [v]
return results_
@PIPELINES.register_module()
class DiscardDuplicatedItems:
def __init__(self, keys_list):
"""Discard duplicated single-item results.
Args:
keys_list (list): List of keys that need to be deduplicate.
"""
self.keys_list = keys_list
def __call__(self, results):
for k, v in results.items():
if k in self.keys_list:
assert isinstance(v, Sequence)
results[k] = v[0]
return results
@PIPELINES.register_module()
class MultitaskGatherTarget:
"""Gather the targets for multitask heads.
Args:
pipeline_list (list[list]): List of pipelines for all heads.
pipeline_indices (list[int]): Pipeline index of each head.
"""
def __init__(self,
pipeline_list,
pipeline_indices=None,
keys=('target', 'target_weight')):
self.keys = keys
self.pipelines = []
for pipeline in pipeline_list:
self.pipelines.append(Compose(pipeline))
if pipeline_indices is None:
self.pipeline_indices = list(range(len(pipeline_list)))
else:
self.pipeline_indices = pipeline_indices
def __call__(self, results):
# generate target and target weights using all pipelines
pipeline_outputs = []
for pipeline in self.pipelines:
pipeline_output = pipeline(results)
pipeline_outputs.append(pipeline_output.copy())
for key in self.keys:
result_key = []
for ind in self.pipeline_indices:
result_key.append(pipeline_outputs[ind].get(key, None))
results[key] = result_key
return results
@PIPELINES.register_module()
class RenameKeys:
"""Rename the keys.
Args:
key_pairs (Sequence[tuple]): Required keys to be renamed.
If a tuple (key_src, key_tgt) is given as an element,
the item retrieved by key_src will be renamed as key_tgt.
"""
def __init__(self, key_pairs):
self.key_pairs = key_pairs
def __call__(self, results):
"""Rename keys."""
for key_pair in self.key_pairs:
assert len(key_pair) == 2
key_src, key_tgt = key_pair
results[key_tgt] = results.pop(key_src)
return results
|