HaMeR / mmpose /datasets /pipelines /pose3d_transform.py
geopavlakos's picture
Initial commit
d7a991a
raw
history blame
23.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import mmcv
import numpy as np
import torch
from mmcv.utils import build_from_cfg
from mmpose.core.camera import CAMERAS
from mmpose.core.post_processing import fliplr_regression
from mmpose.datasets.builder import PIPELINES
@PIPELINES.register_module()
class GetRootCenteredPose:
"""Zero-center the pose around a given root joint. Optionally, the root
joint can be removed from the original pose and stored as a separate item.
Note that the root-centered joints may no longer align with some annotation
information (e.g. flip_pairs, num_joints, inference_channel, etc.) due to
the removal of the root joint.
Args:
item (str): The name of the pose to apply root-centering.
root_index (int): Root joint index in the pose.
visible_item (str): The name of the visibility item.
remove_root (bool): If true, remove the root joint from the pose
root_name (str): Optional. If not none, it will be used as the key to
store the root position separated from the original pose.
Required keys:
item
Modified keys:
item, visible_item, root_name
"""
def __init__(self,
item,
root_index,
visible_item=None,
remove_root=False,
root_name=None):
self.item = item
self.root_index = root_index
self.remove_root = remove_root
self.root_name = root_name
self.visible_item = visible_item
def __call__(self, results):
assert self.item in results
joints = results[self.item]
root_idx = self.root_index
assert joints.ndim >= 2 and joints.shape[-2] > root_idx,\
f'Got invalid joint shape {joints.shape}'
root = joints[..., root_idx:root_idx + 1, :]
joints = joints - root
results[self.item] = joints
if self.root_name is not None:
results[self.root_name] = root
if self.remove_root:
results[self.item] = np.delete(
results[self.item], root_idx, axis=-2)
if self.visible_item is not None:
assert self.visible_item in results
results[self.visible_item] = np.delete(
results[self.visible_item], root_idx, axis=-2)
# Add a flag to avoid latter transforms that rely on the root
# joint or the original joint index
results[f'{self.item}_root_removed'] = True
# Save the root index which is necessary to restore the global pose
if self.root_name is not None:
results[f'{self.root_name}_index'] = self.root_index
return results
@PIPELINES.register_module()
class NormalizeJointCoordinate:
"""Normalize the joint coordinate with given mean and std.
Args:
item (str): The name of the pose to normalize.
mean (array): Mean values of joint coordinates in shape [K, C].
std (array): Std values of joint coordinates in shape [K, C].
norm_param_file (str): Optionally load a dict containing `mean` and
`std` from a file using `mmcv.load`.
Required keys:
item
Modified keys:
item
"""
def __init__(self, item, mean=None, std=None, norm_param_file=None):
self.item = item
self.norm_param_file = norm_param_file
if norm_param_file is not None:
norm_param = mmcv.load(norm_param_file)
assert 'mean' in norm_param and 'std' in norm_param
mean = norm_param['mean']
std = norm_param['std']
else:
assert mean is not None
assert std is not None
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
def __call__(self, results):
assert self.item in results
results[self.item] = (results[self.item] - self.mean) / self.std
results[f'{self.item}_mean'] = self.mean.copy()
results[f'{self.item}_std'] = self.std.copy()
return results
@PIPELINES.register_module()
class ImageCoordinateNormalization:
"""Normalize the 2D joint coordinate with image width and height. Range [0,
w] is mapped to [-1, 1], while preserving the aspect ratio.
Args:
item (str|list[str]): The name of the pose to normalize.
norm_camera (bool): Whether to normalize camera intrinsics.
Default: False.
camera_param (dict|None): The camera parameter dict. See the camera
class definition for more details. If None is given, the camera
parameter will be obtained during processing of each data sample
with the key "camera_param".
Required keys:
item
Modified keys:
item (, camera_param)
"""
def __init__(self, item, norm_camera=False, camera_param=None):
self.item = item
if isinstance(self.item, str):
self.item = [self.item]
self.norm_camera = norm_camera
if camera_param is None:
self.static_camera = False
else:
self.static_camera = True
self.camera_param = camera_param
def __call__(self, results):
center = np.array(
[0.5 * results['image_width'], 0.5 * results['image_height']],
dtype=np.float32)
scale = np.array(0.5 * results['image_width'], dtype=np.float32)
for item in self.item:
results[item] = (results[item] - center) / scale
if self.norm_camera:
if self.static_camera:
camera_param = copy.deepcopy(self.camera_param)
else:
assert 'camera_param' in results, \
'Camera parameters are missing.'
camera_param = results['camera_param']
assert 'f' in camera_param and 'c' in camera_param
camera_param['f'] = camera_param['f'] / scale
camera_param['c'] = (camera_param['c'] - center[:, None]) / scale
if 'camera_param' not in results:
results['camera_param'] = dict()
results['camera_param'].update(camera_param)
return results
@PIPELINES.register_module()
class CollectCameraIntrinsics:
"""Store camera intrinsics in a 1-dim array, including f, c, k, p.
Args:
camera_param (dict|None): The camera parameter dict. See the camera
class definition for more details. If None is given, the camera
parameter will be obtained during processing of each data sample
with the key "camera_param".
need_distortion (bool): Whether need distortion parameters k and p.
Default: True.
Required keys:
camera_param (if camera parameters are not given in initialization)
Modified keys:
intrinsics
"""
def __init__(self, camera_param=None, need_distortion=True):
if camera_param is None:
self.static_camera = False
else:
self.static_camera = True
self.camera_param = camera_param
self.need_distortion = need_distortion
def __call__(self, results):
if self.static_camera:
camera_param = copy.deepcopy(self.camera_param)
else:
assert 'camera_param' in results, 'Camera parameters are missing.'
camera_param = results['camera_param']
assert 'f' in camera_param and 'c' in camera_param
intrinsics = np.concatenate(
[camera_param['f'].reshape(2), camera_param['c'].reshape(2)])
if self.need_distortion:
assert 'k' in camera_param and 'p' in camera_param
intrinsics = np.concatenate([
intrinsics, camera_param['k'].reshape(3),
camera_param['p'].reshape(2)
])
results['intrinsics'] = intrinsics
return results
@PIPELINES.register_module()
class CameraProjection:
"""Apply camera projection to joint coordinates.
Args:
item (str): The name of the pose to apply camera projection.
mode (str): The type of camera projection, supported options are
- world_to_camera
- world_to_pixel
- camera_to_world
- camera_to_pixel
output_name (str|None): The name of the projected pose. If None
(default) is given, the projected pose will be stored in place.
camera_type (str): The camera class name (should be registered in
CAMERA).
camera_param (dict|None): The camera parameter dict. See the camera
class definition for more details. If None is given, the camera
parameter will be obtained during processing of each data sample
with the key "camera_param".
Required keys:
- item
- camera_param (if camera parameters are not given in initialization)
Modified keys:
output_name
"""
def __init__(self,
item,
mode,
output_name=None,
camera_type='SimpleCamera',
camera_param=None):
self.item = item
self.mode = mode
self.output_name = output_name
self.camera_type = camera_type
allowed_mode = {
'world_to_camera',
'world_to_pixel',
'camera_to_world',
'camera_to_pixel',
}
if mode not in allowed_mode:
raise ValueError(
f'Got invalid mode: {mode}, allowed modes are {allowed_mode}')
if camera_param is None:
self.static_camera = False
else:
self.static_camera = True
self.camera = self._build_camera(camera_param)
def _build_camera(self, param):
cfgs = dict(type=self.camera_type, param=param)
return build_from_cfg(cfgs, CAMERAS)
def __call__(self, results):
assert self.item in results
joints = results[self.item]
if self.static_camera:
camera = self.camera
else:
assert 'camera_param' in results, 'Camera parameters are missing.'
camera = self._build_camera(results['camera_param'])
if self.mode == 'world_to_camera':
output = camera.world_to_camera(joints)
elif self.mode == 'world_to_pixel':
output = camera.world_to_pixel(joints)
elif self.mode == 'camera_to_world':
output = camera.camera_to_world(joints)
elif self.mode == 'camera_to_pixel':
output = camera.camera_to_pixel(joints)
else:
raise NotImplementedError
output_name = self.output_name
if output_name is None:
output_name = self.item
results[output_name] = output
return results
@PIPELINES.register_module()
class RelativeJointRandomFlip:
"""Data augmentation with random horizontal joint flip around a root joint.
Args:
item (str|list[str]): The name of the pose to flip.
flip_cfg (dict|list[dict]): Configurations of the fliplr_regression
function. It should contain the following arguments:
- ``center_mode``: The mode to set the center location on the \
x-axis to flip around.
- ``center_x`` or ``center_index``: Set the x-axis location or \
the root joint's index to define the flip center.
Please refer to the docstring of the fliplr_regression function for
more details.
visible_item (str|list[str]): The name of the visibility item which
will be flipped accordingly along with the pose.
flip_prob (float): Probability of flip.
flip_camera (bool): Whether to flip horizontal distortion coefficients.
camera_param (dict|None): The camera parameter dict. See the camera
class definition for more details. If None is given, the camera
parameter will be obtained during processing of each data sample
with the key "camera_param".
Required keys:
item
Modified keys:
item (, camera_param)
"""
def __init__(self,
item,
flip_cfg,
visible_item=None,
flip_prob=0.5,
flip_camera=False,
camera_param=None):
self.item = item
self.flip_cfg = flip_cfg
self.vis_item = visible_item
self.flip_prob = flip_prob
self.flip_camera = flip_camera
if camera_param is None:
self.static_camera = False
else:
self.static_camera = True
self.camera_param = camera_param
if isinstance(self.item, str):
self.item = [self.item]
if isinstance(self.flip_cfg, dict):
self.flip_cfg = [self.flip_cfg] * len(self.item)
assert len(self.item) == len(self.flip_cfg)
if isinstance(self.vis_item, str):
self.vis_item = [self.vis_item]
def __call__(self, results):
if results.get(f'{self.item}_root_removed', False):
raise RuntimeError('The transform RelativeJointRandomFlip should '
f'not be applied to {self.item} whose root '
'joint has been removed and joint indices have '
'been changed')
if np.random.rand() <= self.flip_prob:
flip_pairs = results['ann_info']['flip_pairs']
# flip joint coordinates
for i, item in enumerate(self.item):
assert item in results
joints = results[item]
joints_flipped = fliplr_regression(joints, flip_pairs,
**self.flip_cfg[i])
results[item] = joints_flipped
# flip joint visibility
for vis_item in self.vis_item:
assert vis_item in results
visible = results[vis_item]
visible_flipped = visible.copy()
for left, right in flip_pairs:
visible_flipped[..., left, :] = visible[..., right, :]
visible_flipped[..., right, :] = visible[..., left, :]
results[vis_item] = visible_flipped
# flip horizontal distortion coefficients
if self.flip_camera:
if self.static_camera:
camera_param = copy.deepcopy(self.camera_param)
else:
assert 'camera_param' in results, \
'Camera parameters are missing.'
camera_param = results['camera_param']
assert 'c' in camera_param
camera_param['c'][0] *= -1
if 'p' in camera_param:
camera_param['p'][0] *= -1
if 'camera_param' not in results:
results['camera_param'] = dict()
results['camera_param'].update(camera_param)
return results
@PIPELINES.register_module()
class PoseSequenceToTensor:
"""Convert pose sequence from numpy array to Tensor.
The original pose sequence should have a shape of [T,K,C] or [K,C], where
T is the sequence length, K and C are keypoint number and dimension. The
converted pose sequence will have a shape of [KxC, T].
Args:
item (str): The name of the pose sequence
Required keys:
item
Modified keys:
item
"""
def __init__(self, item):
self.item = item
def __call__(self, results):
assert self.item in results
seq = results[self.item]
assert isinstance(seq, np.ndarray)
assert seq.ndim in {2, 3}
if seq.ndim == 2:
seq = seq[None, ...]
T = seq.shape[0]
seq = seq.transpose(1, 2, 0).reshape(-1, T)
results[self.item] = torch.from_numpy(seq)
return results
@PIPELINES.register_module()
class Generate3DHeatmapTarget:
"""Generate the target 3d heatmap.
Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info'.
Modified keys: 'target', and 'target_weight'.
Args:
sigma: Sigma of heatmap gaussian.
joint_indices (list): Indices of joints used for heatmap generation.
If None (default) is given, all joints will be used.
max_bound (float): The maximal value of heatmap.
"""
def __init__(self, sigma=2, joint_indices=None, max_bound=1.0):
self.sigma = sigma
self.joint_indices = joint_indices
self.max_bound = max_bound
def __call__(self, results):
"""Generate the target heatmap."""
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
cfg = results['ann_info']
image_size = cfg['image_size']
W, H, D = cfg['heatmap_size']
heatmap3d_depth_bound = cfg['heatmap3d_depth_bound']
joint_weights = cfg['joint_weights']
use_different_joint_weights = cfg['use_different_joint_weights']
# select the joints used for target generation
if self.joint_indices is not None:
joints_3d = joints_3d[self.joint_indices, ...]
joints_3d_visible = joints_3d_visible[self.joint_indices, ...]
joint_weights = joint_weights[self.joint_indices, ...]
num_joints = joints_3d.shape[0]
# get the joint location in heatmap coordinates
mu_x = joints_3d[:, 0] * W / image_size[0]
mu_y = joints_3d[:, 1] * H / image_size[1]
mu_z = (joints_3d[:, 2] / heatmap3d_depth_bound + 0.5) * D
target = np.zeros([num_joints, D, H, W], dtype=np.float32)
target_weight = joints_3d_visible[:, 0].astype(np.float32)
target_weight = target_weight * (mu_z >= 0) * (mu_z < D)
if use_different_joint_weights:
target_weight = target_weight * joint_weights
target_weight = target_weight[:, None]
# only compute the voxel value near the joints location
tmp_size = 3 * self.sigma
# get neighboring voxels coordinates
x = y = z = np.arange(2 * tmp_size + 1, dtype=np.float32) - tmp_size
zz, yy, xx = np.meshgrid(z, y, x)
xx = xx[None, ...].astype(np.float32)
yy = yy[None, ...].astype(np.float32)
zz = zz[None, ...].astype(np.float32)
mu_x = mu_x[..., None, None, None]
mu_y = mu_y[..., None, None, None]
mu_z = mu_z[..., None, None, None]
xx, yy, zz = xx + mu_x, yy + mu_y, zz + mu_z
# round the coordinates
xx = xx.round().clip(0, W - 1)
yy = yy.round().clip(0, H - 1)
zz = zz.round().clip(0, D - 1)
# compute the target value near joints
local_target = \
np.exp(-((xx - mu_x)**2 + (yy - mu_y)**2 + (zz - mu_z)**2) /
(2 * self.sigma**2))
# put the local target value to the full target heatmap
local_size = xx.shape[1]
idx_joints = np.tile(
np.arange(num_joints)[:, None, None, None],
[1, local_size, local_size, local_size])
idx = np.stack([idx_joints, zz, yy, xx],
axis=-1).astype(int).reshape(-1, 4)
target[idx[:, 0], idx[:, 1], idx[:, 2],
idx[:, 3]] = local_target.reshape(-1)
target = target * self.max_bound
results['target'] = target
results['target_weight'] = target_weight
return results
@PIPELINES.register_module()
class GenerateVoxel3DHeatmapTarget:
"""Generate the target 3d heatmap.
Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info_3d'.
Modified keys: 'target', and 'target_weight'.
Args:
sigma: Sigma of heatmap gaussian (mm).
joint_indices (list): Indices of joints used for heatmap generation.
If None (default) is given, all joints will be used.
"""
def __init__(self, sigma=200.0, joint_indices=None):
self.sigma = sigma # mm
self.joint_indices = joint_indices
def __call__(self, results):
"""Generate the target heatmap."""
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
cfg = results['ann_info']
num_people = len(joints_3d)
num_joints = joints_3d[0].shape[0]
if self.joint_indices is not None:
num_joints = len(self.joint_indices)
joint_indices = self.joint_indices
else:
joint_indices = list(range(num_joints))
space_size = cfg['space_size']
space_center = cfg['space_center']
cube_size = cfg['cube_size']
grids_x = np.linspace(-space_size[0] / 2, space_size[0] / 2,
cube_size[0]) + space_center[0]
grids_y = np.linspace(-space_size[1] / 2, space_size[1] / 2,
cube_size[1]) + space_center[1]
grids_z = np.linspace(-space_size[2] / 2, space_size[2] / 2,
cube_size[2]) + space_center[2]
target = np.zeros(
(num_joints, cube_size[0], cube_size[1], cube_size[2]),
dtype=np.float32)
for n in range(num_people):
for idx, joint_id in enumerate(joint_indices):
mu_x = joints_3d[n][joint_id][0]
mu_y = joints_3d[n][joint_id][1]
mu_z = joints_3d[n][joint_id][2]
vis = joints_3d_visible[n][joint_id][0]
if vis < 1:
continue
i_x = [
np.searchsorted(grids_x, mu_x - 3 * self.sigma),
np.searchsorted(grids_x, mu_x + 3 * self.sigma, 'right')
]
i_y = [
np.searchsorted(grids_y, mu_y - 3 * self.sigma),
np.searchsorted(grids_y, mu_y + 3 * self.sigma, 'right')
]
i_z = [
np.searchsorted(grids_z, mu_z - 3 * self.sigma),
np.searchsorted(grids_z, mu_z + 3 * self.sigma, 'right')
]
if i_x[0] >= i_x[1] or i_y[0] >= i_y[1] or i_z[0] >= i_z[1]:
continue
kernel_xs, kernel_ys, kernel_zs = np.meshgrid(
grids_x[i_x[0]:i_x[1]],
grids_y[i_y[0]:i_y[1]],
grids_z[i_z[0]:i_z[1]],
indexing='ij')
g = np.exp(-((kernel_xs - mu_x)**2 + (kernel_ys - mu_y)**2 +
(kernel_zs - mu_z)**2) / (2 * self.sigma**2))
target[idx, i_x[0]:i_x[1], i_y[0]:i_y[1], i_z[0]:i_z[1]] \
= np.maximum(target[idx, i_x[0]:i_x[1],
i_y[0]:i_y[1], i_z[0]:i_z[1]], g)
target = np.clip(target, 0, 1)
if target.shape[0] == 1:
target = target[0]
results['targets_3d'] = target
return results