# Copyright (c) OpenMMLab. All rights reserved. import copy import mmcv import numpy as np import torch from mmcv.utils import build_from_cfg from mmpose.core.camera import CAMERAS from mmpose.core.post_processing import fliplr_regression from mmpose.datasets.builder import PIPELINES @PIPELINES.register_module() class GetRootCenteredPose: """Zero-center the pose around a given root joint. Optionally, the root joint can be removed from the original pose and stored as a separate item. Note that the root-centered joints may no longer align with some annotation information (e.g. flip_pairs, num_joints, inference_channel, etc.) due to the removal of the root joint. Args: item (str): The name of the pose to apply root-centering. root_index (int): Root joint index in the pose. visible_item (str): The name of the visibility item. remove_root (bool): If true, remove the root joint from the pose root_name (str): Optional. If not none, it will be used as the key to store the root position separated from the original pose. Required keys: item Modified keys: item, visible_item, root_name """ def __init__(self, item, root_index, visible_item=None, remove_root=False, root_name=None): self.item = item self.root_index = root_index self.remove_root = remove_root self.root_name = root_name self.visible_item = visible_item def __call__(self, results): assert self.item in results joints = results[self.item] root_idx = self.root_index assert joints.ndim >= 2 and joints.shape[-2] > root_idx,\ f'Got invalid joint shape {joints.shape}' root = joints[..., root_idx:root_idx + 1, :] joints = joints - root results[self.item] = joints if self.root_name is not None: results[self.root_name] = root if self.remove_root: results[self.item] = np.delete( results[self.item], root_idx, axis=-2) if self.visible_item is not None: assert self.visible_item in results results[self.visible_item] = np.delete( results[self.visible_item], root_idx, axis=-2) # Add a flag to avoid latter transforms that rely on the root # joint or the original joint index results[f'{self.item}_root_removed'] = True # Save the root index which is necessary to restore the global pose if self.root_name is not None: results[f'{self.root_name}_index'] = self.root_index return results @PIPELINES.register_module() class NormalizeJointCoordinate: """Normalize the joint coordinate with given mean and std. Args: item (str): The name of the pose to normalize. mean (array): Mean values of joint coordinates in shape [K, C]. std (array): Std values of joint coordinates in shape [K, C]. norm_param_file (str): Optionally load a dict containing `mean` and `std` from a file using `mmcv.load`. Required keys: item Modified keys: item """ def __init__(self, item, mean=None, std=None, norm_param_file=None): self.item = item self.norm_param_file = norm_param_file if norm_param_file is not None: norm_param = mmcv.load(norm_param_file) assert 'mean' in norm_param and 'std' in norm_param mean = norm_param['mean'] std = norm_param['std'] else: assert mean is not None assert std is not None self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) def __call__(self, results): assert self.item in results results[self.item] = (results[self.item] - self.mean) / self.std results[f'{self.item}_mean'] = self.mean.copy() results[f'{self.item}_std'] = self.std.copy() return results @PIPELINES.register_module() class ImageCoordinateNormalization: """Normalize the 2D joint coordinate with image width and height. Range [0, w] is mapped to [-1, 1], while preserving the aspect ratio. Args: item (str|list[str]): The name of the pose to normalize. norm_camera (bool): Whether to normalize camera intrinsics. Default: False. camera_param (dict|None): The camera parameter dict. See the camera class definition for more details. If None is given, the camera parameter will be obtained during processing of each data sample with the key "camera_param". Required keys: item Modified keys: item (, camera_param) """ def __init__(self, item, norm_camera=False, camera_param=None): self.item = item if isinstance(self.item, str): self.item = [self.item] self.norm_camera = norm_camera if camera_param is None: self.static_camera = False else: self.static_camera = True self.camera_param = camera_param def __call__(self, results): center = np.array( [0.5 * results['image_width'], 0.5 * results['image_height']], dtype=np.float32) scale = np.array(0.5 * results['image_width'], dtype=np.float32) for item in self.item: results[item] = (results[item] - center) / scale if self.norm_camera: if self.static_camera: camera_param = copy.deepcopy(self.camera_param) else: assert 'camera_param' in results, \ 'Camera parameters are missing.' camera_param = results['camera_param'] assert 'f' in camera_param and 'c' in camera_param camera_param['f'] = camera_param['f'] / scale camera_param['c'] = (camera_param['c'] - center[:, None]) / scale if 'camera_param' not in results: results['camera_param'] = dict() results['camera_param'].update(camera_param) return results @PIPELINES.register_module() class CollectCameraIntrinsics: """Store camera intrinsics in a 1-dim array, including f, c, k, p. Args: camera_param (dict|None): The camera parameter dict. See the camera class definition for more details. If None is given, the camera parameter will be obtained during processing of each data sample with the key "camera_param". need_distortion (bool): Whether need distortion parameters k and p. Default: True. Required keys: camera_param (if camera parameters are not given in initialization) Modified keys: intrinsics """ def __init__(self, camera_param=None, need_distortion=True): if camera_param is None: self.static_camera = False else: self.static_camera = True self.camera_param = camera_param self.need_distortion = need_distortion def __call__(self, results): if self.static_camera: camera_param = copy.deepcopy(self.camera_param) else: assert 'camera_param' in results, 'Camera parameters are missing.' camera_param = results['camera_param'] assert 'f' in camera_param and 'c' in camera_param intrinsics = np.concatenate( [camera_param['f'].reshape(2), camera_param['c'].reshape(2)]) if self.need_distortion: assert 'k' in camera_param and 'p' in camera_param intrinsics = np.concatenate([ intrinsics, camera_param['k'].reshape(3), camera_param['p'].reshape(2) ]) results['intrinsics'] = intrinsics return results @PIPELINES.register_module() class CameraProjection: """Apply camera projection to joint coordinates. Args: item (str): The name of the pose to apply camera projection. mode (str): The type of camera projection, supported options are - world_to_camera - world_to_pixel - camera_to_world - camera_to_pixel output_name (str|None): The name of the projected pose. If None (default) is given, the projected pose will be stored in place. camera_type (str): The camera class name (should be registered in CAMERA). camera_param (dict|None): The camera parameter dict. See the camera class definition for more details. If None is given, the camera parameter will be obtained during processing of each data sample with the key "camera_param". Required keys: - item - camera_param (if camera parameters are not given in initialization) Modified keys: output_name """ def __init__(self, item, mode, output_name=None, camera_type='SimpleCamera', camera_param=None): self.item = item self.mode = mode self.output_name = output_name self.camera_type = camera_type allowed_mode = { 'world_to_camera', 'world_to_pixel', 'camera_to_world', 'camera_to_pixel', } if mode not in allowed_mode: raise ValueError( f'Got invalid mode: {mode}, allowed modes are {allowed_mode}') if camera_param is None: self.static_camera = False else: self.static_camera = True self.camera = self._build_camera(camera_param) def _build_camera(self, param): cfgs = dict(type=self.camera_type, param=param) return build_from_cfg(cfgs, CAMERAS) def __call__(self, results): assert self.item in results joints = results[self.item] if self.static_camera: camera = self.camera else: assert 'camera_param' in results, 'Camera parameters are missing.' camera = self._build_camera(results['camera_param']) if self.mode == 'world_to_camera': output = camera.world_to_camera(joints) elif self.mode == 'world_to_pixel': output = camera.world_to_pixel(joints) elif self.mode == 'camera_to_world': output = camera.camera_to_world(joints) elif self.mode == 'camera_to_pixel': output = camera.camera_to_pixel(joints) else: raise NotImplementedError output_name = self.output_name if output_name is None: output_name = self.item results[output_name] = output return results @PIPELINES.register_module() class RelativeJointRandomFlip: """Data augmentation with random horizontal joint flip around a root joint. Args: item (str|list[str]): The name of the pose to flip. flip_cfg (dict|list[dict]): Configurations of the fliplr_regression function. It should contain the following arguments: - ``center_mode``: The mode to set the center location on the \ x-axis to flip around. - ``center_x`` or ``center_index``: Set the x-axis location or \ the root joint's index to define the flip center. Please refer to the docstring of the fliplr_regression function for more details. visible_item (str|list[str]): The name of the visibility item which will be flipped accordingly along with the pose. flip_prob (float): Probability of flip. flip_camera (bool): Whether to flip horizontal distortion coefficients. camera_param (dict|None): The camera parameter dict. See the camera class definition for more details. If None is given, the camera parameter will be obtained during processing of each data sample with the key "camera_param". Required keys: item Modified keys: item (, camera_param) """ def __init__(self, item, flip_cfg, visible_item=None, flip_prob=0.5, flip_camera=False, camera_param=None): self.item = item self.flip_cfg = flip_cfg self.vis_item = visible_item self.flip_prob = flip_prob self.flip_camera = flip_camera if camera_param is None: self.static_camera = False else: self.static_camera = True self.camera_param = camera_param if isinstance(self.item, str): self.item = [self.item] if isinstance(self.flip_cfg, dict): self.flip_cfg = [self.flip_cfg] * len(self.item) assert len(self.item) == len(self.flip_cfg) if isinstance(self.vis_item, str): self.vis_item = [self.vis_item] def __call__(self, results): if results.get(f'{self.item}_root_removed', False): raise RuntimeError('The transform RelativeJointRandomFlip should ' f'not be applied to {self.item} whose root ' 'joint has been removed and joint indices have ' 'been changed') if np.random.rand() <= self.flip_prob: flip_pairs = results['ann_info']['flip_pairs'] # flip joint coordinates for i, item in enumerate(self.item): assert item in results joints = results[item] joints_flipped = fliplr_regression(joints, flip_pairs, **self.flip_cfg[i]) results[item] = joints_flipped # flip joint visibility for vis_item in self.vis_item: assert vis_item in results visible = results[vis_item] visible_flipped = visible.copy() for left, right in flip_pairs: visible_flipped[..., left, :] = visible[..., right, :] visible_flipped[..., right, :] = visible[..., left, :] results[vis_item] = visible_flipped # flip horizontal distortion coefficients if self.flip_camera: if self.static_camera: camera_param = copy.deepcopy(self.camera_param) else: assert 'camera_param' in results, \ 'Camera parameters are missing.' camera_param = results['camera_param'] assert 'c' in camera_param camera_param['c'][0] *= -1 if 'p' in camera_param: camera_param['p'][0] *= -1 if 'camera_param' not in results: results['camera_param'] = dict() results['camera_param'].update(camera_param) return results @PIPELINES.register_module() class PoseSequenceToTensor: """Convert pose sequence from numpy array to Tensor. The original pose sequence should have a shape of [T,K,C] or [K,C], where T is the sequence length, K and C are keypoint number and dimension. The converted pose sequence will have a shape of [KxC, T]. Args: item (str): The name of the pose sequence Required keys: item Modified keys: item """ def __init__(self, item): self.item = item def __call__(self, results): assert self.item in results seq = results[self.item] assert isinstance(seq, np.ndarray) assert seq.ndim in {2, 3} if seq.ndim == 2: seq = seq[None, ...] T = seq.shape[0] seq = seq.transpose(1, 2, 0).reshape(-1, T) results[self.item] = torch.from_numpy(seq) return results @PIPELINES.register_module() class Generate3DHeatmapTarget: """Generate the target 3d heatmap. Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info'. Modified keys: 'target', and 'target_weight'. Args: sigma: Sigma of heatmap gaussian. joint_indices (list): Indices of joints used for heatmap generation. If None (default) is given, all joints will be used. max_bound (float): The maximal value of heatmap. """ def __init__(self, sigma=2, joint_indices=None, max_bound=1.0): self.sigma = sigma self.joint_indices = joint_indices self.max_bound = max_bound def __call__(self, results): """Generate the target heatmap.""" joints_3d = results['joints_3d'] joints_3d_visible = results['joints_3d_visible'] cfg = results['ann_info'] image_size = cfg['image_size'] W, H, D = cfg['heatmap_size'] heatmap3d_depth_bound = cfg['heatmap3d_depth_bound'] joint_weights = cfg['joint_weights'] use_different_joint_weights = cfg['use_different_joint_weights'] # select the joints used for target generation if self.joint_indices is not None: joints_3d = joints_3d[self.joint_indices, ...] joints_3d_visible = joints_3d_visible[self.joint_indices, ...] joint_weights = joint_weights[self.joint_indices, ...] num_joints = joints_3d.shape[0] # get the joint location in heatmap coordinates mu_x = joints_3d[:, 0] * W / image_size[0] mu_y = joints_3d[:, 1] * H / image_size[1] mu_z = (joints_3d[:, 2] / heatmap3d_depth_bound + 0.5) * D target = np.zeros([num_joints, D, H, W], dtype=np.float32) target_weight = joints_3d_visible[:, 0].astype(np.float32) target_weight = target_weight * (mu_z >= 0) * (mu_z < D) if use_different_joint_weights: target_weight = target_weight * joint_weights target_weight = target_weight[:, None] # only compute the voxel value near the joints location tmp_size = 3 * self.sigma # get neighboring voxels coordinates x = y = z = np.arange(2 * tmp_size + 1, dtype=np.float32) - tmp_size zz, yy, xx = np.meshgrid(z, y, x) xx = xx[None, ...].astype(np.float32) yy = yy[None, ...].astype(np.float32) zz = zz[None, ...].astype(np.float32) mu_x = mu_x[..., None, None, None] mu_y = mu_y[..., None, None, None] mu_z = mu_z[..., None, None, None] xx, yy, zz = xx + mu_x, yy + mu_y, zz + mu_z # round the coordinates xx = xx.round().clip(0, W - 1) yy = yy.round().clip(0, H - 1) zz = zz.round().clip(0, D - 1) # compute the target value near joints local_target = \ np.exp(-((xx - mu_x)**2 + (yy - mu_y)**2 + (zz - mu_z)**2) / (2 * self.sigma**2)) # put the local target value to the full target heatmap local_size = xx.shape[1] idx_joints = np.tile( np.arange(num_joints)[:, None, None, None], [1, local_size, local_size, local_size]) idx = np.stack([idx_joints, zz, yy, xx], axis=-1).astype(int).reshape(-1, 4) target[idx[:, 0], idx[:, 1], idx[:, 2], idx[:, 3]] = local_target.reshape(-1) target = target * self.max_bound results['target'] = target results['target_weight'] = target_weight return results @PIPELINES.register_module() class GenerateVoxel3DHeatmapTarget: """Generate the target 3d heatmap. Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info_3d'. Modified keys: 'target', and 'target_weight'. Args: sigma: Sigma of heatmap gaussian (mm). joint_indices (list): Indices of joints used for heatmap generation. If None (default) is given, all joints will be used. """ def __init__(self, sigma=200.0, joint_indices=None): self.sigma = sigma # mm self.joint_indices = joint_indices def __call__(self, results): """Generate the target heatmap.""" joints_3d = results['joints_3d'] joints_3d_visible = results['joints_3d_visible'] cfg = results['ann_info'] num_people = len(joints_3d) num_joints = joints_3d[0].shape[0] if self.joint_indices is not None: num_joints = len(self.joint_indices) joint_indices = self.joint_indices else: joint_indices = list(range(num_joints)) space_size = cfg['space_size'] space_center = cfg['space_center'] cube_size = cfg['cube_size'] grids_x = np.linspace(-space_size[0] / 2, space_size[0] / 2, cube_size[0]) + space_center[0] grids_y = np.linspace(-space_size[1] / 2, space_size[1] / 2, cube_size[1]) + space_center[1] grids_z = np.linspace(-space_size[2] / 2, space_size[2] / 2, cube_size[2]) + space_center[2] target = np.zeros( (num_joints, cube_size[0], cube_size[1], cube_size[2]), dtype=np.float32) for n in range(num_people): for idx, joint_id in enumerate(joint_indices): mu_x = joints_3d[n][joint_id][0] mu_y = joints_3d[n][joint_id][1] mu_z = joints_3d[n][joint_id][2] vis = joints_3d_visible[n][joint_id][0] if vis < 1: continue i_x = [ np.searchsorted(grids_x, mu_x - 3 * self.sigma), np.searchsorted(grids_x, mu_x + 3 * self.sigma, 'right') ] i_y = [ np.searchsorted(grids_y, mu_y - 3 * self.sigma), np.searchsorted(grids_y, mu_y + 3 * self.sigma, 'right') ] i_z = [ np.searchsorted(grids_z, mu_z - 3 * self.sigma), np.searchsorted(grids_z, mu_z + 3 * self.sigma, 'right') ] if i_x[0] >= i_x[1] or i_y[0] >= i_y[1] or i_z[0] >= i_z[1]: continue kernel_xs, kernel_ys, kernel_zs = np.meshgrid( grids_x[i_x[0]:i_x[1]], grids_y[i_y[0]:i_y[1]], grids_z[i_z[0]:i_z[1]], indexing='ij') g = np.exp(-((kernel_xs - mu_x)**2 + (kernel_ys - mu_y)**2 + (kernel_zs - mu_z)**2) / (2 * self.sigma**2)) target[idx, i_x[0]:i_x[1], i_y[0]:i_y[1], i_z[0]:i_z[1]] \ = np.maximum(target[idx, i_x[0]:i_x[1], i_y[0]:i_y[1], i_z[0]:i_z[1]], g) target = np.clip(target, 0, 1) if target.shape[0] == 1: target = target[0] results['targets_3d'] = target return results