Spaces:
Build error
Build error
File size: 9,712 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# ------------------------------------------------------------------------------
# Adapted from https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
# Original licence: Copyright (c) Microsoft, under the MIT License.
# ------------------------------------------------------------------------------
import torch
import torch.nn as nn
from ..builder import LOSSES
def _make_input(t, requires_grad=False, device=torch.device('cpu')):
"""Make zero inputs for AE loss.
Args:
t (torch.Tensor): input
requires_grad (bool): Option to use requires_grad.
device: torch device
Returns:
torch.Tensor: zero input.
"""
inp = torch.autograd.Variable(t, requires_grad=requires_grad)
inp = inp.sum()
inp = inp.to(device)
return inp
@LOSSES.register_module()
class HeatmapLoss(nn.Module):
"""Accumulate the heatmap loss for each image in the batch.
Args:
supervise_empty (bool): Whether to supervise empty channels.
"""
def __init__(self, supervise_empty=True):
super().__init__()
self.supervise_empty = supervise_empty
def forward(self, pred, gt, mask):
"""Forward function.
Note:
- batch_size: N
- heatmaps weight: W
- heatmaps height: H
- max_num_people: M
- num_keypoints: K
Args:
pred (torch.Tensor[N,K,H,W]):heatmap of output.
gt (torch.Tensor[N,K,H,W]): target heatmap.
mask (torch.Tensor[N,H,W]): mask of target.
"""
assert pred.size() == gt.size(
), f'pred.size() is {pred.size()}, gt.size() is {gt.size()}'
if not self.supervise_empty:
empty_mask = (gt.sum(dim=[2, 3], keepdim=True) > 0).float()
loss = ((pred - gt)**2) * empty_mask.expand_as(
pred) * mask[:, None, :, :].expand_as(pred)
else:
loss = ((pred - gt)**2) * mask[:, None, :, :].expand_as(pred)
loss = loss.mean(dim=3).mean(dim=2).mean(dim=1)
return loss
@LOSSES.register_module()
class AELoss(nn.Module):
"""Associative Embedding loss.
`Associative Embedding: End-to-End Learning for Joint Detection and
Grouping <https://arxiv.org/abs/1611.05424v2>`_.
"""
def __init__(self, loss_type):
super().__init__()
self.loss_type = loss_type
def singleTagLoss(self, pred_tag, joints):
"""Associative embedding loss for one image.
Note:
- heatmaps weight: W
- heatmaps height: H
- max_num_people: M
- num_keypoints: K
Args:
pred_tag (torch.Tensor[KxHxW,1]): tag of output for one image.
joints (torch.Tensor[M,K,2]): joints information for one image.
"""
tags = []
pull = 0
for joints_per_person in joints:
tmp = []
for joint in joints_per_person:
if joint[1] > 0:
tmp.append(pred_tag[joint[0]])
if len(tmp) == 0:
continue
tmp = torch.stack(tmp)
tags.append(torch.mean(tmp, dim=0))
pull = pull + torch.mean((tmp - tags[-1].expand_as(tmp))**2)
num_tags = len(tags)
if num_tags == 0:
return (
_make_input(torch.zeros(1).float(), device=pred_tag.device),
_make_input(torch.zeros(1).float(), device=pred_tag.device))
elif num_tags == 1:
return (_make_input(
torch.zeros(1).float(), device=pred_tag.device), pull)
tags = torch.stack(tags)
size = (num_tags, num_tags)
A = tags.expand(*size)
B = A.permute(1, 0)
diff = A - B
if self.loss_type == 'exp':
diff = torch.pow(diff, 2)
push = torch.exp(-diff)
push = torch.sum(push) - num_tags
elif self.loss_type == 'max':
diff = 1 - torch.abs(diff)
push = torch.clamp(diff, min=0).sum() - num_tags
else:
raise ValueError('Unknown ae loss type')
push_loss = push / ((num_tags - 1) * num_tags) * 0.5
pull_loss = pull / (num_tags)
return push_loss, pull_loss
def forward(self, tags, joints):
"""Accumulate the tag loss for each image in the batch.
Note:
- batch_size: N
- heatmaps weight: W
- heatmaps height: H
- max_num_people: M
- num_keypoints: K
Args:
tags (torch.Tensor[N,KxHxW,1]): tag channels of output.
joints (torch.Tensor[N,M,K,2]): joints information.
"""
pushes, pulls = [], []
joints = joints.cpu().data.numpy()
batch_size = tags.size(0)
for i in range(batch_size):
push, pull = self.singleTagLoss(tags[i], joints[i])
pushes.append(push)
pulls.append(pull)
return torch.stack(pushes), torch.stack(pulls)
@LOSSES.register_module()
class MultiLossFactory(nn.Module):
"""Loss for bottom-up models.
Args:
num_joints (int): Number of keypoints.
num_stages (int): Number of stages.
ae_loss_type (str): Type of ae loss.
with_ae_loss (list[bool]): Use ae loss or not in multi-heatmap.
push_loss_factor (list[float]):
Parameter of push loss in multi-heatmap.
pull_loss_factor (list[float]):
Parameter of pull loss in multi-heatmap.
with_heatmap_loss (list[bool]):
Use heatmap loss or not in multi-heatmap.
heatmaps_loss_factor (list[float]):
Parameter of heatmap loss in multi-heatmap.
supervise_empty (bool): Whether to supervise empty channels.
"""
def __init__(self,
num_joints,
num_stages,
ae_loss_type,
with_ae_loss,
push_loss_factor,
pull_loss_factor,
with_heatmaps_loss,
heatmaps_loss_factor,
supervise_empty=True):
super().__init__()
assert isinstance(with_heatmaps_loss, (list, tuple)), \
'with_heatmaps_loss should be a list or tuple'
assert isinstance(heatmaps_loss_factor, (list, tuple)), \
'heatmaps_loss_factor should be a list or tuple'
assert isinstance(with_ae_loss, (list, tuple)), \
'with_ae_loss should be a list or tuple'
assert isinstance(push_loss_factor, (list, tuple)), \
'push_loss_factor should be a list or tuple'
assert isinstance(pull_loss_factor, (list, tuple)), \
'pull_loss_factor should be a list or tuple'
self.num_joints = num_joints
self.num_stages = num_stages
self.ae_loss_type = ae_loss_type
self.with_ae_loss = with_ae_loss
self.push_loss_factor = push_loss_factor
self.pull_loss_factor = pull_loss_factor
self.with_heatmaps_loss = with_heatmaps_loss
self.heatmaps_loss_factor = heatmaps_loss_factor
self.heatmaps_loss = \
nn.ModuleList(
[
HeatmapLoss(supervise_empty)
if with_heatmaps_loss else None
for with_heatmaps_loss in self.with_heatmaps_loss
]
)
self.ae_loss = \
nn.ModuleList(
[
AELoss(self.ae_loss_type) if with_ae_loss else None
for with_ae_loss in self.with_ae_loss
]
)
def forward(self, outputs, heatmaps, masks, joints):
"""Forward function to calculate losses.
Note:
- batch_size: N
- heatmaps weight: W
- heatmaps height: H
- max_num_people: M
- num_keypoints: K
- output_channel: C C=2K if use ae loss else K
Args:
outputs (list(torch.Tensor[N,C,H,W])): outputs of stages.
heatmaps (list(torch.Tensor[N,K,H,W])): target of heatmaps.
masks (list(torch.Tensor[N,H,W])): masks of heatmaps.
joints (list(torch.Tensor[N,M,K,2])): joints of ae loss.
"""
heatmaps_losses = []
push_losses = []
pull_losses = []
for idx in range(len(outputs)):
offset_feat = 0
if self.heatmaps_loss[idx]:
heatmaps_pred = outputs[idx][:, :self.num_joints]
offset_feat = self.num_joints
heatmaps_loss = self.heatmaps_loss[idx](heatmaps_pred,
heatmaps[idx],
masks[idx])
heatmaps_loss = heatmaps_loss * self.heatmaps_loss_factor[idx]
heatmaps_losses.append(heatmaps_loss)
else:
heatmaps_losses.append(None)
if self.ae_loss[idx]:
tags_pred = outputs[idx][:, offset_feat:]
batch_size = tags_pred.size()[0]
tags_pred = tags_pred.contiguous().view(batch_size, -1, 1)
push_loss, pull_loss = self.ae_loss[idx](tags_pred,
joints[idx])
push_loss = push_loss * self.push_loss_factor[idx]
pull_loss = pull_loss * self.pull_loss_factor[idx]
push_losses.append(push_loss)
pull_losses.append(pull_loss)
else:
push_losses.append(None)
pull_losses.append(None)
return heatmaps_losses, push_losses, pull_losses
|