Spaces:
Build error
Build error
File size: 11,092 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import mmcv
import numpy as np
from mmcv.image import imwrite
from mmcv.utils.misc import deprecated_api_warning
from mmcv.visualization.image import imshow
from mmpose.core import imshow_bboxes, imshow_keypoints
from .. import builder
from ..builder import POSENETS
from .base import BasePose
try:
from mmcv.runner import auto_fp16
except ImportError:
warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
'Please install mmcv>=1.1.4')
from mmpose.core import auto_fp16
@POSENETS.register_module()
class TopDown(BasePose):
"""Top-down pose detectors.
Args:
backbone (dict): Backbone modules to extract feature.
keypoint_head (dict): Keypoint head to process feature.
train_cfg (dict): Config for training. Default: None.
test_cfg (dict): Config for testing. Default: None.
pretrained (str): Path to the pretrained models.
loss_pose (None): Deprecated arguments. Please use
`loss_keypoint` for heads instead.
"""
def __init__(self,
backbone,
neck=None,
keypoint_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
loss_pose=None):
super().__init__()
self.fp16_enabled = False
self.backbone = builder.build_backbone(backbone)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if neck is not None:
self.neck = builder.build_neck(neck)
if keypoint_head is not None:
keypoint_head['train_cfg'] = train_cfg
keypoint_head['test_cfg'] = test_cfg
if 'loss_keypoint' not in keypoint_head and loss_pose is not None:
warnings.warn(
'`loss_pose` for TopDown is deprecated, '
'use `loss_keypoint` for heads instead. See '
'https://github.com/open-mmlab/mmpose/pull/382'
' for more information.', DeprecationWarning)
keypoint_head['loss_keypoint'] = loss_pose
self.keypoint_head = builder.build_head(keypoint_head)
self.init_weights(pretrained=pretrained)
@property
def with_neck(self):
"""Check if has neck."""
return hasattr(self, 'neck')
@property
def with_keypoint(self):
"""Check if has keypoint_head."""
return hasattr(self, 'keypoint_head')
def init_weights(self, pretrained=None):
"""Weight initialization for model."""
self.backbone.init_weights(pretrained)
if self.with_neck:
self.neck.init_weights()
if self.with_keypoint:
self.keypoint_head.init_weights()
@auto_fp16(apply_to=('img', ))
def forward(self,
img,
target=None,
target_weight=None,
img_metas=None,
return_loss=True,
return_heatmap=False,
**kwargs):
"""Calls either forward_train or forward_test depending on whether
return_loss=True. Note this setting will change the expected inputs.
When `return_loss=True`, img and img_meta are single-nested (i.e.
Tensor and List[dict]), and when `resturn_loss=False`, img and img_meta
should be double nested (i.e. List[Tensor], List[List[dict]]), with
the outer list indicating test time augmentations.
Note:
- batch_size: N
- num_keypoints: K
- num_img_channel: C (Default: 3)
- img height: imgH
- img width: imgW
- heatmaps height: H
- heatmaps weight: W
Args:
img (torch.Tensor[NxCximgHximgW]): Input images.
target (torch.Tensor[NxKxHxW]): Target heatmaps.
target_weight (torch.Tensor[NxKx1]): Weights across
different joint types.
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: path to the image file
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
return_loss (bool): Option to `return loss`. `return loss=True`
for training, `return loss=False` for validation & test.
return_heatmap (bool) : Option to return heatmap.
Returns:
dict|tuple: if `return loss` is true, then return losses. \
Otherwise, return predicted poses, boxes, image paths \
and heatmaps.
"""
if return_loss:
return self.forward_train(img, target, target_weight, img_metas,
**kwargs)
return self.forward_test(
img, img_metas, return_heatmap=return_heatmap, **kwargs)
def forward_train(self, img, target, target_weight, img_metas, **kwargs):
"""Defines the computation performed at every call when training."""
output = self.backbone(img)
if self.with_neck:
output = self.neck(output)
if self.with_keypoint:
output = self.keypoint_head(output)
# if return loss
losses = dict()
if self.with_keypoint:
keypoint_losses = self.keypoint_head.get_loss(
output, target, target_weight)
losses.update(keypoint_losses)
keypoint_accuracy = self.keypoint_head.get_accuracy(
output, target, target_weight)
losses.update(keypoint_accuracy)
return losses
def forward_test(self, img, img_metas, return_heatmap=False, **kwargs):
"""Defines the computation performed at every call when testing."""
assert img.size(0) == len(img_metas)
batch_size, _, img_height, img_width = img.shape
if batch_size > 1:
assert 'bbox_id' in img_metas[0]
result = {}
features = self.backbone(img)
if self.with_neck:
features = self.neck(features)
if self.with_keypoint:
output_heatmap = self.keypoint_head.inference_model(
features, flip_pairs=None)
if self.test_cfg.get('flip_test', True):
img_flipped = img.flip(3)
features_flipped = self.backbone(img_flipped)
if self.with_neck:
features_flipped = self.neck(features_flipped)
if self.with_keypoint:
output_flipped_heatmap = self.keypoint_head.inference_model(
features_flipped, img_metas[0]['flip_pairs'])
output_heatmap = (output_heatmap +
output_flipped_heatmap) * 0.5
if self.with_keypoint:
keypoint_result = self.keypoint_head.decode(
img_metas, output_heatmap, img_size=[img_width, img_height])
result.update(keypoint_result)
if not return_heatmap:
output_heatmap = None
result['output_heatmap'] = output_heatmap
return result
def forward_dummy(self, img):
"""Used for computing network FLOPs.
See ``tools/get_flops.py``.
Args:
img (torch.Tensor): Input image.
Returns:
Tensor: Output heatmaps.
"""
output = self.backbone(img)
if self.with_neck:
output = self.neck(output)
if self.with_keypoint:
output = self.keypoint_head(output)
return output
@deprecated_api_warning({'pose_limb_color': 'pose_link_color'},
cls_name='TopDown')
def show_result(self,
img,
result,
skeleton=None,
kpt_score_thr=0.3,
bbox_color='green',
pose_kpt_color=None,
pose_link_color=None,
text_color='white',
radius=4,
thickness=1,
font_scale=0.5,
bbox_thickness=1,
win_name='',
show=False,
show_keypoint_weight=False,
wait_time=0,
out_file=None):
"""Draw `result` over `img`.
Args:
img (str or Tensor): The image to be displayed.
result (list[dict]): The results to draw over `img`
(bbox_result, pose_result).
skeleton (list[list]): The connection of keypoints.
skeleton is 0-based indexing.
kpt_score_thr (float, optional): Minimum score of keypoints
to be shown. Default: 0.3.
bbox_color (str or tuple or :obj:`Color`): Color of bbox lines.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints.
If None, do not draw keypoints.
pose_link_color (np.array[Mx3]): Color of M links.
If None, do not draw links.
text_color (str or tuple or :obj:`Color`): Color of texts.
radius (int): Radius of circles.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
win_name (str): The window name.
show (bool): Whether to show the image. Default: False.
show_keypoint_weight (bool): Whether to change the transparency
using the predicted confidence scores of keypoints.
wait_time (int): Value of waitKey param.
Default: 0.
out_file (str or None): The filename to write the image.
Default: None.
Returns:
Tensor: Visualized img, only if not `show` or `out_file`.
"""
img = mmcv.imread(img)
img = img.copy()
bbox_result = []
bbox_labels = []
pose_result = []
for res in result:
if 'bbox' in res:
bbox_result.append(res['bbox'])
bbox_labels.append(res.get('label', None))
pose_result.append(res['keypoints'])
if bbox_result:
bboxes = np.vstack(bbox_result)
# draw bounding boxes
imshow_bboxes(
img,
bboxes,
labels=bbox_labels,
colors=bbox_color,
text_color=text_color,
thickness=bbox_thickness,
font_scale=font_scale,
show=False)
if pose_result:
imshow_keypoints(img, pose_result, skeleton, kpt_score_thr,
pose_kpt_color, pose_link_color, radius,
thickness)
if show:
imshow(img, win_name, wait_time)
if out_file is not None:
imwrite(img, out_file)
return img
|