Spaces:
Build error
Build error
File size: 9,129 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
import torch
from ..builder import POSENETS
from .top_down import TopDown
try:
from mmcv.runner import auto_fp16
except ImportError:
warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
'Please install mmcv>=1.1.4')
from mmpose.core import auto_fp16
@POSENETS.register_module()
class PoseWarper(TopDown):
"""Top-down pose detectors for multi-frame settings for video inputs.
`"Learning temporal pose estimation from sparsely-labeled videos"
<https://arxiv.org/abs/1906.04016>`_.
A child class of TopDown detector. The main difference between PoseWarper
and TopDown lies in that the former takes a list of tensors as input image
while the latter takes a single tensor as input image in forward method.
Args:
backbone (dict): Backbone modules to extract features.
neck (dict): intermediate modules to transform features.
keypoint_head (dict): Keypoint head to process feature.
train_cfg (dict): Config for training. Default: None.
test_cfg (dict): Config for testing. Default: None.
pretrained (str): Path to the pretrained models.
loss_pose (None): Deprecated arguments. Please use
`loss_keypoint` for heads instead.
concat_tensors (bool): Whether to concat the tensors on the batch dim,
which can speed up, Default: True
"""
def __init__(self,
backbone,
neck=None,
keypoint_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
loss_pose=None,
concat_tensors=True):
super().__init__(
backbone=backbone,
neck=neck,
keypoint_head=keypoint_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
pretrained=pretrained,
loss_pose=loss_pose)
self.concat_tensors = concat_tensors
@auto_fp16(apply_to=('img', ))
def forward(self,
img,
target=None,
target_weight=None,
img_metas=None,
return_loss=True,
return_heatmap=False,
**kwargs):
"""Calls either forward_train or forward_test depending on whether
return_loss=True. Note this setting will change the expected inputs.
When `return_loss=True`, img and img_meta are single-nested (i.e.
Tensor and List[dict]), and when `resturn_loss=False`, img and img_meta
should be double nested (i.e. List[Tensor], List[List[dict]]), with
the outer list indicating test time augmentations.
Note:
- number of frames: F
- batch_size: N
- num_keypoints: K
- num_img_channel: C (Default: 3)
- img height: imgH
- img width: imgW
- heatmaps height: H
- heatmaps weight: W
Args:
imgs (list[F,torch.Tensor[N,C,imgH,imgW]]): multiple input frames
target (torch.Tensor[N,K,H,W]): Target heatmaps for one frame.
target_weight (torch.Tensor[N,K,1]): Weights across
different joint types.
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: paths to multiple video frames
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
return_loss (bool): Option to `return loss`. `return loss=True`
for training, `return loss=False` for validation & test.
return_heatmap (bool) : Option to return heatmap.
Returns:
dict|tuple: if `return loss` is true, then return losses. \
Otherwise, return predicted poses, boxes, image paths \
and heatmaps.
"""
if return_loss:
return self.forward_train(img, target, target_weight, img_metas,
**kwargs)
return self.forward_test(
img, img_metas, return_heatmap=return_heatmap, **kwargs)
def forward_train(self, imgs, target, target_weight, img_metas, **kwargs):
"""Defines the computation performed at every call when training."""
# imgs (list[Fxtorch.Tensor[NxCximgHximgW]]): multiple input frames
assert imgs[0].size(0) == len(img_metas)
num_frames = len(imgs)
frame_weight = img_metas[0]['frame_weight']
assert num_frames == len(frame_weight), f'The number of frames ' \
f'({num_frames}) and the length of weights for each frame ' \
f'({len(frame_weight)}) must match'
if self.concat_tensors:
features = [self.backbone(torch.cat(imgs, 0))]
else:
features = [self.backbone(img) for img in imgs]
if self.with_neck:
features = self.neck(features, frame_weight=frame_weight)
if self.with_keypoint:
output = self.keypoint_head(features)
# if return loss
losses = dict()
if self.with_keypoint:
keypoint_losses = self.keypoint_head.get_loss(
output, target, target_weight)
losses.update(keypoint_losses)
keypoint_accuracy = self.keypoint_head.get_accuracy(
output, target, target_weight)
losses.update(keypoint_accuracy)
return losses
def forward_test(self, imgs, img_metas, return_heatmap=False, **kwargs):
"""Defines the computation performed at every call when testing."""
# imgs (list[Fxtorch.Tensor[NxCximgHximgW]]): multiple input frames
assert imgs[0].size(0) == len(img_metas)
num_frames = len(imgs)
frame_weight = img_metas[0]['frame_weight']
assert num_frames == len(frame_weight), f'The number of frames ' \
f'({num_frames}) and the length of weights for each frame ' \
f'({len(frame_weight)}) must match'
batch_size, _, img_height, img_width = imgs[0].shape
if batch_size > 1:
assert 'bbox_id' in img_metas[0]
result = {}
if self.concat_tensors:
features = [self.backbone(torch.cat(imgs, 0))]
else:
features = [self.backbone(img) for img in imgs]
if self.with_neck:
features = self.neck(features, frame_weight=frame_weight)
if self.with_keypoint:
output_heatmap = self.keypoint_head.inference_model(
features, flip_pairs=None)
if self.test_cfg.get('flip_test', True):
imgs_flipped = [img.flip(3) for img in imgs]
if self.concat_tensors:
features_flipped = [self.backbone(torch.cat(imgs_flipped, 0))]
else:
features_flipped = [
self.backbone(img_flipped) for img_flipped in imgs_flipped
]
if self.with_neck:
features_flipped = self.neck(
features_flipped, frame_weight=frame_weight)
if self.with_keypoint:
output_flipped_heatmap = self.keypoint_head.inference_model(
features_flipped, img_metas[0]['flip_pairs'])
output_heatmap = (output_heatmap +
output_flipped_heatmap) * 0.5
if self.with_keypoint:
keypoint_result = self.keypoint_head.decode(
img_metas, output_heatmap, img_size=[img_width, img_height])
result.update(keypoint_result)
if not return_heatmap:
output_heatmap = None
result['output_heatmap'] = output_heatmap
return result
def forward_dummy(self, img):
"""Used for computing network FLOPs.
See ``tools/get_flops.py``.
Args:
img (torch.Tensor[N,C,imgH,imgW], or list|tuple of tensors):
multiple input frames, N >= 2.
Returns:
Tensor: Output heatmaps.
"""
# concat tensors if they are in a list
if isinstance(img, (list, tuple)):
img = torch.cat(img, 0)
batch_size = img.size(0)
assert batch_size > 1, 'Input batch size to PoseWarper ' \
'should be larger than 1.'
if batch_size == 2:
warnings.warn('Current batch size: 2, for pytorch2onnx and '
'getting flops both.')
else:
warnings.warn(
f'Current batch size: {batch_size}, for getting flops only.')
frame_weight = np.random.uniform(0, 1, batch_size)
output = [self.backbone(img)]
if self.with_neck:
output = self.neck(output, frame_weight=frame_weight)
if self.with_keypoint:
output = self.keypoint_head(output)
return output
|