File size: 9,129 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import numpy as np
import torch

from ..builder import POSENETS
from .top_down import TopDown

try:
    from mmcv.runner import auto_fp16
except ImportError:
    warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
                  'Please install mmcv>=1.1.4')
    from mmpose.core import auto_fp16


@POSENETS.register_module()
class PoseWarper(TopDown):
    """Top-down pose detectors for multi-frame settings for video inputs.

    `"Learning temporal pose estimation from sparsely-labeled videos"
    <https://arxiv.org/abs/1906.04016>`_.

    A child class of TopDown detector. The main difference between PoseWarper
    and TopDown lies in that the former takes a list of tensors as input image
    while the latter takes a single tensor as input image in forward method.

    Args:
        backbone (dict): Backbone modules to extract features.
        neck (dict): intermediate modules to transform features.
        keypoint_head (dict): Keypoint head to process feature.
        train_cfg (dict): Config for training. Default: None.
        test_cfg (dict): Config for testing. Default: None.
        pretrained (str): Path to the pretrained models.
        loss_pose (None): Deprecated arguments. Please use
            `loss_keypoint` for heads instead.
        concat_tensors (bool): Whether to concat the tensors on the batch dim,
            which can speed up, Default: True
    """

    def __init__(self,
                 backbone,
                 neck=None,
                 keypoint_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 loss_pose=None,
                 concat_tensors=True):
        super().__init__(
            backbone=backbone,
            neck=neck,
            keypoint_head=keypoint_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained,
            loss_pose=loss_pose)
        self.concat_tensors = concat_tensors

    @auto_fp16(apply_to=('img', ))
    def forward(self,
                img,
                target=None,
                target_weight=None,
                img_metas=None,
                return_loss=True,
                return_heatmap=False,
                **kwargs):
        """Calls either forward_train or forward_test depending on whether
        return_loss=True. Note this setting will change the expected inputs.
        When `return_loss=True`, img and img_meta are single-nested (i.e.
        Tensor and List[dict]), and when `resturn_loss=False`, img and img_meta
        should be double nested (i.e.  List[Tensor], List[List[dict]]), with
        the outer list indicating test time augmentations.

        Note:
            - number of frames: F
            - batch_size: N
            - num_keypoints: K
            - num_img_channel: C (Default: 3)
            - img height: imgH
            - img width: imgW
            - heatmaps height: H
            - heatmaps weight: W

        Args:
            imgs (list[F,torch.Tensor[N,C,imgH,imgW]]): multiple input frames
            target (torch.Tensor[N,K,H,W]): Target heatmaps for one frame.
            target_weight (torch.Tensor[N,K,1]): Weights across
                different joint types.
            img_metas (list(dict)): Information about data augmentation
                By default this includes:

                - "image_file: paths to multiple video frames
                - "center": center of the bbox
                - "scale": scale of the bbox
                - "rotation": rotation of the bbox
                - "bbox_score": score of bbox
            return_loss (bool): Option to `return loss`. `return loss=True`
                for training, `return loss=False` for validation & test.
            return_heatmap (bool) : Option to return heatmap.

        Returns:
            dict|tuple: if `return loss` is true, then return losses. \
                Otherwise, return predicted poses, boxes, image paths \
                and heatmaps.
        """
        if return_loss:
            return self.forward_train(img, target, target_weight, img_metas,
                                      **kwargs)
        return self.forward_test(
            img, img_metas, return_heatmap=return_heatmap, **kwargs)

    def forward_train(self, imgs, target, target_weight, img_metas, **kwargs):
        """Defines the computation performed at every call when training."""
        # imgs (list[Fxtorch.Tensor[NxCximgHximgW]]): multiple input frames
        assert imgs[0].size(0) == len(img_metas)
        num_frames = len(imgs)
        frame_weight = img_metas[0]['frame_weight']

        assert num_frames == len(frame_weight), f'The number of frames ' \
            f'({num_frames}) and the length of weights for each frame ' \
            f'({len(frame_weight)}) must match'

        if self.concat_tensors:
            features = [self.backbone(torch.cat(imgs, 0))]
        else:
            features = [self.backbone(img) for img in imgs]

        if self.with_neck:
            features = self.neck(features, frame_weight=frame_weight)

        if self.with_keypoint:
            output = self.keypoint_head(features)

        # if return loss
        losses = dict()
        if self.with_keypoint:
            keypoint_losses = self.keypoint_head.get_loss(
                output, target, target_weight)
            losses.update(keypoint_losses)
            keypoint_accuracy = self.keypoint_head.get_accuracy(
                output, target, target_weight)
            losses.update(keypoint_accuracy)

        return losses

    def forward_test(self, imgs, img_metas, return_heatmap=False, **kwargs):
        """Defines the computation performed at every call when testing."""
        # imgs (list[Fxtorch.Tensor[NxCximgHximgW]]): multiple input frames
        assert imgs[0].size(0) == len(img_metas)
        num_frames = len(imgs)
        frame_weight = img_metas[0]['frame_weight']

        assert num_frames == len(frame_weight), f'The number of frames ' \
            f'({num_frames}) and the length of weights for each frame ' \
            f'({len(frame_weight)}) must match'

        batch_size, _, img_height, img_width = imgs[0].shape

        if batch_size > 1:
            assert 'bbox_id' in img_metas[0]

        result = {}

        if self.concat_tensors:
            features = [self.backbone(torch.cat(imgs, 0))]
        else:
            features = [self.backbone(img) for img in imgs]

        if self.with_neck:
            features = self.neck(features, frame_weight=frame_weight)

        if self.with_keypoint:
            output_heatmap = self.keypoint_head.inference_model(
                features, flip_pairs=None)

        if self.test_cfg.get('flip_test', True):
            imgs_flipped = [img.flip(3) for img in imgs]

            if self.concat_tensors:
                features_flipped = [self.backbone(torch.cat(imgs_flipped, 0))]
            else:
                features_flipped = [
                    self.backbone(img_flipped) for img_flipped in imgs_flipped
                ]

            if self.with_neck:
                features_flipped = self.neck(
                    features_flipped, frame_weight=frame_weight)

            if self.with_keypoint:
                output_flipped_heatmap = self.keypoint_head.inference_model(
                    features_flipped, img_metas[0]['flip_pairs'])
                output_heatmap = (output_heatmap +
                                  output_flipped_heatmap) * 0.5

        if self.with_keypoint:
            keypoint_result = self.keypoint_head.decode(
                img_metas, output_heatmap, img_size=[img_width, img_height])
            result.update(keypoint_result)

            if not return_heatmap:
                output_heatmap = None

            result['output_heatmap'] = output_heatmap

        return result

    def forward_dummy(self, img):
        """Used for computing network FLOPs.

        See ``tools/get_flops.py``.

        Args:
            img (torch.Tensor[N,C,imgH,imgW], or list|tuple of tensors):
                multiple input frames, N >= 2.

        Returns:
            Tensor: Output heatmaps.
        """
        # concat tensors if they are in a list
        if isinstance(img, (list, tuple)):
            img = torch.cat(img, 0)

        batch_size = img.size(0)
        assert batch_size > 1, 'Input batch size to PoseWarper ' \
            'should be larger than 1.'
        if batch_size == 2:
            warnings.warn('Current batch size: 2, for pytorch2onnx and '
                          'getting flops both.')
        else:
            warnings.warn(
                f'Current batch size: {batch_size}, for getting flops only.')

        frame_weight = np.random.uniform(0, 1, batch_size)
        output = [self.backbone(img)]

        if self.with_neck:
            output = self.neck(output, frame_weight=frame_weight)
        if self.with_keypoint:
            output = self.keypoint_head(output)
        return output