Spaces:
Build error
Build error
File size: 15,503 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import mmcv
import torch
from mmcv.image import imwrite
from mmcv.utils.misc import deprecated_api_warning
from mmcv.visualization.image import imshow
from mmpose.core.evaluation import (aggregate_scale, aggregate_stage_flip,
flip_feature_maps, get_group_preds,
split_ae_outputs)
from mmpose.core.post_processing.group import HeatmapParser
from mmpose.core.visualization import imshow_keypoints
from .. import builder
from ..builder import POSENETS
from .base import BasePose
try:
from mmcv.runner import auto_fp16
except ImportError:
warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
'Please install mmcv>=1.1.4')
from mmpose.core import auto_fp16
@POSENETS.register_module()
class AssociativeEmbedding(BasePose):
"""Associative embedding pose detectors.
Args:
backbone (dict): Backbone modules to extract feature.
keypoint_head (dict): Keypoint head to process feature.
train_cfg (dict): Config for training. Default: None.
test_cfg (dict): Config for testing. Default: None.
pretrained (str): Path to the pretrained models.
loss_pose (None): Deprecated arguments. Please use
``loss_keypoint`` for heads instead.
"""
def __init__(self,
backbone,
keypoint_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
loss_pose=None):
super().__init__()
self.fp16_enabled = False
self.backbone = builder.build_backbone(backbone)
if keypoint_head is not None:
if 'loss_keypoint' not in keypoint_head and loss_pose is not None:
warnings.warn(
'`loss_pose` for BottomUp is deprecated, '
'use `loss_keypoint` for heads instead. See '
'https://github.com/open-mmlab/mmpose/pull/382'
' for more information.', DeprecationWarning)
keypoint_head['loss_keypoint'] = loss_pose
self.keypoint_head = builder.build_head(keypoint_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.use_udp = test_cfg.get('use_udp', False)
self.parser = HeatmapParser(self.test_cfg)
self.init_weights(pretrained=pretrained)
@property
def with_keypoint(self):
"""Check if has keypoint_head."""
return hasattr(self, 'keypoint_head')
def init_weights(self, pretrained=None):
"""Weight initialization for model."""
self.backbone.init_weights(pretrained)
if self.with_keypoint:
self.keypoint_head.init_weights()
@auto_fp16(apply_to=('img', ))
def forward(self,
img=None,
targets=None,
masks=None,
joints=None,
img_metas=None,
return_loss=True,
return_heatmap=False,
**kwargs):
"""Calls either forward_train or forward_test depending on whether
return_loss is True.
Note:
- batch_size: N
- num_keypoints: K
- num_img_channel: C
- img_width: imgW
- img_height: imgH
- heatmaps weight: W
- heatmaps height: H
- max_num_people: M
Args:
img (torch.Tensor[N,C,imgH,imgW]): Input image.
targets (list(torch.Tensor[N,K,H,W])): Multi-scale target heatmaps.
masks (list(torch.Tensor[N,H,W])): Masks of multi-scale target
heatmaps
joints (list(torch.Tensor[N,M,K,2])): Joints of multi-scale target
heatmaps for ae loss
img_metas (dict): Information about val & test.
By default it includes:
- "image_file": image path
- "aug_data": input
- "test_scale_factor": test scale factor
- "base_size": base size of input
- "center": center of image
- "scale": scale of image
- "flip_index": flip index of keypoints
return loss (bool): ``return_loss=True`` for training,
``return_loss=False`` for validation & test.
return_heatmap (bool) : Option to return heatmap.
Returns:
dict|tuple: if 'return_loss' is true, then return losses. \
Otherwise, return predicted poses, scores, image \
paths and heatmaps.
"""
if return_loss:
return self.forward_train(img, targets, masks, joints, img_metas,
**kwargs)
return self.forward_test(
img, img_metas, return_heatmap=return_heatmap, **kwargs)
def forward_train(self, img, targets, masks, joints, img_metas, **kwargs):
"""Forward the bottom-up model and calculate the loss.
Note:
batch_size: N
num_keypoints: K
num_img_channel: C
img_width: imgW
img_height: imgH
heatmaps weight: W
heatmaps height: H
max_num_people: M
Args:
img (torch.Tensor[N,C,imgH,imgW]): Input image.
targets (List(torch.Tensor[N,K,H,W])): Multi-scale target heatmaps.
masks (List(torch.Tensor[N,H,W])): Masks of multi-scale target
heatmaps
joints (List(torch.Tensor[N,M,K,2])): Joints of multi-scale target
heatmaps for ae loss
img_metas (dict):Information about val&test
By default this includes:
- "image_file": image path
- "aug_data": input
- "test_scale_factor": test scale factor
- "base_size": base size of input
- "center": center of image
- "scale": scale of image
- "flip_index": flip index of keypoints
Returns:
dict: The total loss for bottom-up
"""
output = self.backbone(img)
if self.with_keypoint:
output = self.keypoint_head(output)
# if return loss
losses = dict()
if self.with_keypoint:
keypoint_losses = self.keypoint_head.get_loss(
output, targets, masks, joints)
losses.update(keypoint_losses)
return losses
def forward_dummy(self, img):
"""Used for computing network FLOPs.
See ``tools/get_flops.py``.
Args:
img (torch.Tensor): Input image.
Returns:
Tensor: Outputs.
"""
output = self.backbone(img)
if self.with_keypoint:
output = self.keypoint_head(output)
return output
def forward_test(self, img, img_metas, return_heatmap=False, **kwargs):
"""Inference the bottom-up model.
Note:
- Batchsize: N (currently support batchsize = 1)
- num_img_channel: C
- img_width: imgW
- img_height: imgH
Args:
flip_index (List(int)):
aug_data (List(Tensor[NxCximgHximgW])): Multi-scale image
test_scale_factor (List(float)): Multi-scale factor
base_size (Tuple(int)): Base size of image when scale is 1
center (np.ndarray): center of image
scale (np.ndarray): the scale of image
"""
assert img.size(0) == 1
assert len(img_metas) == 1
img_metas = img_metas[0]
aug_data = img_metas['aug_data']
test_scale_factor = img_metas['test_scale_factor']
base_size = img_metas['base_size']
center = img_metas['center']
scale = img_metas['scale']
result = {}
scale_heatmaps_list = []
scale_tags_list = []
for idx, s in enumerate(sorted(test_scale_factor, reverse=True)):
image_resized = aug_data[idx].to(img.device)
features = self.backbone(image_resized)
if self.with_keypoint:
outputs = self.keypoint_head(features)
heatmaps, tags = split_ae_outputs(
outputs, self.test_cfg['num_joints'],
self.test_cfg['with_heatmaps'], self.test_cfg['with_ae'],
self.test_cfg.get('select_output_index', range(len(outputs))))
if self.test_cfg.get('flip_test', True):
# use flip test
features_flipped = self.backbone(
torch.flip(image_resized, [3]))
if self.with_keypoint:
outputs_flipped = self.keypoint_head(features_flipped)
heatmaps_flipped, tags_flipped = split_ae_outputs(
outputs_flipped, self.test_cfg['num_joints'],
self.test_cfg['with_heatmaps'], self.test_cfg['with_ae'],
self.test_cfg.get('select_output_index',
range(len(outputs))))
heatmaps_flipped = flip_feature_maps(
heatmaps_flipped, flip_index=img_metas['flip_index'])
if self.test_cfg['tag_per_joint']:
tags_flipped = flip_feature_maps(
tags_flipped, flip_index=img_metas['flip_index'])
else:
tags_flipped = flip_feature_maps(
tags_flipped, flip_index=None, flip_output=True)
else:
heatmaps_flipped = None
tags_flipped = None
aggregated_heatmaps = aggregate_stage_flip(
heatmaps,
heatmaps_flipped,
index=-1,
project2image=self.test_cfg['project2image'],
size_projected=base_size,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_stage='average',
aggregate_flip='average')
aggregated_tags = aggregate_stage_flip(
tags,
tags_flipped,
index=-1,
project2image=self.test_cfg['project2image'],
size_projected=base_size,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_stage='concat',
aggregate_flip='concat')
if s == 1 or len(test_scale_factor) == 1:
if isinstance(aggregated_tags, list):
scale_tags_list.extend(aggregated_tags)
else:
scale_tags_list.append(aggregated_tags)
if isinstance(aggregated_heatmaps, list):
scale_heatmaps_list.extend(aggregated_heatmaps)
else:
scale_heatmaps_list.append(aggregated_heatmaps)
aggregated_heatmaps = aggregate_scale(
scale_heatmaps_list,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_scale='average')
aggregated_tags = aggregate_scale(
scale_tags_list,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_scale='unsqueeze_concat')
heatmap_size = aggregated_heatmaps.shape[2:4]
tag_size = aggregated_tags.shape[2:4]
if heatmap_size != tag_size:
tmp = []
for idx in range(aggregated_tags.shape[-1]):
tmp.append(
torch.nn.functional.interpolate(
aggregated_tags[..., idx],
size=heatmap_size,
mode='bilinear',
align_corners=self.test_cfg.get('align_corners',
True)).unsqueeze(-1))
aggregated_tags = torch.cat(tmp, dim=-1)
# perform grouping
grouped, scores = self.parser.parse(aggregated_heatmaps,
aggregated_tags,
self.test_cfg['adjust'],
self.test_cfg['refine'])
preds = get_group_preds(
grouped,
center,
scale, [aggregated_heatmaps.size(3),
aggregated_heatmaps.size(2)],
use_udp=self.use_udp)
image_paths = []
image_paths.append(img_metas['image_file'])
if return_heatmap:
output_heatmap = aggregated_heatmaps.detach().cpu().numpy()
else:
output_heatmap = None
result['preds'] = preds
result['scores'] = scores
result['image_paths'] = image_paths
result['output_heatmap'] = output_heatmap
return result
@deprecated_api_warning({'pose_limb_color': 'pose_link_color'},
cls_name='AssociativeEmbedding')
def show_result(self,
img,
result,
skeleton=None,
kpt_score_thr=0.3,
bbox_color=None,
pose_kpt_color=None,
pose_link_color=None,
radius=4,
thickness=1,
font_scale=0.5,
win_name='',
show=False,
show_keypoint_weight=False,
wait_time=0,
out_file=None):
"""Draw `result` over `img`.
Args:
img (str or Tensor): The image to be displayed.
result (list[dict]): The results to draw over `img`
(bbox_result, pose_result).
skeleton (list[list]): The connection of keypoints.
skeleton is 0-based indexing.
kpt_score_thr (float, optional): Minimum score of keypoints
to be shown. Default: 0.3.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints.
If None, do not draw keypoints.
pose_link_color (np.array[Mx3]): Color of M links.
If None, do not draw links.
radius (int): Radius of circles.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
win_name (str): The window name.
show (bool): Whether to show the image. Default: False.
show_keypoint_weight (bool): Whether to change the transparency
using the predicted confidence scores of keypoints.
wait_time (int): Value of waitKey param.
Default: 0.
out_file (str or None): The filename to write the image.
Default: None.
Returns:
Tensor: Visualized image only if not `show` or `out_file`
"""
img = mmcv.imread(img)
img = img.copy()
img_h, img_w, _ = img.shape
pose_result = []
for res in result:
pose_result.append(res['keypoints'])
imshow_keypoints(img, pose_result, skeleton, kpt_score_thr,
pose_kpt_color, pose_link_color, radius, thickness)
if show:
imshow(img, win_name, wait_time)
if out_file is not None:
imwrite(img, out_file)
return img
|