File size: 16,715 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os
import warnings

import cv2
import mmcv
import numpy as np
from matplotlib import pyplot as plt
from mmcv.utils.misc import deprecated_api_warning
from mmcv.visualization.color import color_val

try:
    import trimesh
    has_trimesh = True
except (ImportError, ModuleNotFoundError):
    has_trimesh = False

try:
    #os.environ['PYOPENGL_PLATFORM'] = 'egl'
    import pyrender
    has_pyrender = True
except (ImportError, ModuleNotFoundError):
    has_pyrender = False


def imshow_bboxes(img,
                  bboxes,
                  labels=None,
                  colors='green',
                  text_color='white',
                  thickness=1,
                  font_scale=0.5,
                  show=True,
                  win_name='',
                  wait_time=0,
                  out_file=None):
    """Draw bboxes with labels (optional) on an image. This is a wrapper of
    mmcv.imshow_bboxes.

    Args:
        img (str or ndarray): The image to be displayed.
        bboxes (ndarray): ndarray of shape (k, 4), each row is a bbox in
            format [x1, y1, x2, y2].
        labels (str or list[str], optional): labels of each bbox.
        colors (list[str or tuple or :obj:`Color`]): A list of colors.
        text_color (str or tuple or :obj:`Color`): Color of texts.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str, optional): The filename to write the image.

    Returns:
        ndarray: The image with bboxes drawn on it.
    """

    # adapt to mmcv.imshow_bboxes input format
    bboxes = np.split(
        bboxes, bboxes.shape[0], axis=0) if bboxes.shape[0] > 0 else []
    if not isinstance(colors, list):
        colors = [colors for _ in range(len(bboxes))]
    colors = [mmcv.color_val(c) for c in colors]
    assert len(bboxes) == len(colors)

    img = mmcv.imshow_bboxes(
        img,
        bboxes,
        colors,
        top_k=-1,
        thickness=thickness,
        show=False,
        out_file=None)

    if labels is not None:
        if not isinstance(labels, list):
            labels = [labels for _ in range(len(bboxes))]
        assert len(labels) == len(bboxes)

        for bbox, label, color in zip(bboxes, labels, colors):
            if label is None:
                continue
            bbox_int = bbox[0, :4].astype(np.int32)
            # roughly estimate the proper font size
            text_size, text_baseline = cv2.getTextSize(label,
                                                       cv2.FONT_HERSHEY_DUPLEX,
                                                       font_scale, thickness)
            text_x1 = bbox_int[0]
            text_y1 = max(0, bbox_int[1] - text_size[1] - text_baseline)
            text_x2 = bbox_int[0] + text_size[0]
            text_y2 = text_y1 + text_size[1] + text_baseline
            cv2.rectangle(img, (text_x1, text_y1), (text_x2, text_y2), color,
                          cv2.FILLED)
            cv2.putText(img, label, (text_x1, text_y2 - text_baseline),
                        cv2.FONT_HERSHEY_DUPLEX, font_scale,
                        mmcv.color_val(text_color), thickness)

    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)
    return img


@deprecated_api_warning({'pose_limb_color': 'pose_link_color'})
def imshow_keypoints(img,
                     pose_result,
                     skeleton=None,
                     kpt_score_thr=0.3,
                     pose_kpt_color=None,
                     pose_link_color=None,
                     radius=4,
                     thickness=1,
                     show_keypoint_weight=False):
    """Draw keypoints and links on an image.

    Args:
            img (str or Tensor): The image to draw poses on. If an image array
                is given, id will be modified in-place.
            pose_result (list[kpts]): The poses to draw. Each element kpts is
                a set of K keypoints as an Kx3 numpy.ndarray, where each
                keypoint is represented as x, y, score.
            kpt_score_thr (float, optional): Minimum score of keypoints
                to be shown. Default: 0.3.
            pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
                the keypoint will not be drawn.
            pose_link_color (np.array[Mx3]): Color of M links. If None, the
                links will not be drawn.
            thickness (int): Thickness of lines.
    """

    img = mmcv.imread(img)
    img_h, img_w, _ = img.shape

    for kpts in pose_result:

        kpts = np.array(kpts, copy=False)

        # draw each point on image
        if pose_kpt_color is not None:
            assert len(pose_kpt_color) == len(kpts)
            for kid, kpt in enumerate(kpts):
                x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
                if kpt_score > kpt_score_thr:
                    color = tuple(int(c) for c in pose_kpt_color[kid])
                    if show_keypoint_weight:
                        img_copy = img.copy()
                        cv2.circle(img_copy, (int(x_coord), int(y_coord)),
                                   radius, color, -1)
                        transparency = max(0, min(1, kpt_score))
                        cv2.addWeighted(
                            img_copy,
                            transparency,
                            img,
                            1 - transparency,
                            0,
                            dst=img)
                    else:
                        cv2.circle(img, (int(x_coord), int(y_coord)), radius,
                                   color, -1)

        # draw links
        if skeleton is not None and pose_link_color is not None:
            assert len(pose_link_color) == len(skeleton)
            for sk_id, sk in enumerate(skeleton):
                pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
                pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
                if (pos1[0] > 0 and pos1[0] < img_w and pos1[1] > 0
                        and pos1[1] < img_h and pos2[0] > 0 and pos2[0] < img_w
                        and pos2[1] > 0 and pos2[1] < img_h
                        and kpts[sk[0], 2] > kpt_score_thr
                        and kpts[sk[1], 2] > kpt_score_thr):
                    color = tuple(int(c) for c in pose_link_color[sk_id])
                    if show_keypoint_weight:
                        img_copy = img.copy()
                        X = (pos1[0], pos2[0])
                        Y = (pos1[1], pos2[1])
                        mX = np.mean(X)
                        mY = np.mean(Y)
                        length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5
                        angle = math.degrees(
                            math.atan2(Y[0] - Y[1], X[0] - X[1]))
                        stickwidth = 2
                        polygon = cv2.ellipse2Poly(
                            (int(mX), int(mY)),
                            (int(length / 2), int(stickwidth)), int(angle), 0,
                            360, 1)
                        cv2.fillConvexPoly(img_copy, polygon, color)
                        transparency = max(
                            0, min(1, 0.5 * (kpts[sk[0], 2] + kpts[sk[1], 2])))
                        cv2.addWeighted(
                            img_copy,
                            transparency,
                            img,
                            1 - transparency,
                            0,
                            dst=img)
                    else:
                        cv2.line(img, pos1, pos2, color, thickness=thickness)

    return img


def imshow_keypoints_3d(
    pose_result,
    img=None,
    skeleton=None,
    pose_kpt_color=None,
    pose_link_color=None,
    vis_height=400,
    kpt_score_thr=0.3,
    num_instances=-1,
    *,
    axis_azimuth=70,
    axis_limit=1.7,
    axis_dist=10.0,
    axis_elev=15.0,
):
    """Draw 3D keypoints and links in 3D coordinates.

    Args:
        pose_result (list[dict]): 3D pose results containing:
            - "keypoints_3d" ([K,4]): 3D keypoints
            - "title" (str): Optional. A string to specify the title of the
                visualization of this pose result
        img (str|np.ndarray): Opptional. The image or image path to show input
            image and/or 2D pose. Note that the image should be given in BGR
            channel order.
        skeleton (list of [idx_i,idx_j]): Skeleton described by a list of
            links, each is a pair of joint indices.
        pose_kpt_color (np.ndarray[Nx3]`): Color of N keypoints. If None, do
            not nddraw keypoints.
        pose_link_color (np.array[Mx3]): Color of M links. If None, do not
            draw links.
        vis_height (int): The image height of the visualization. The width
                will be N*vis_height depending on the number of visualized
                items.
        kpt_score_thr (float): Minimum score of keypoints to be shown.
            Default: 0.3.
        num_instances (int): Number of instances to be shown in 3D. If smaller
            than 0, all the instances in the pose_result will be shown.
            Otherwise, pad or truncate the pose_result to a length of
            num_instances.
        axis_azimuth (float): axis azimuth angle for 3D visualizations.
        axis_dist (float): axis distance for 3D visualizations.
        axis_elev (float): axis elevation view angle for 3D visualizations.
        axis_limit (float): The axis limit to visualize 3d pose. The xyz
            range will be set as:
            - x: [x_c - axis_limit/2, x_c + axis_limit/2]
            - y: [y_c - axis_limit/2, y_c + axis_limit/2]
            - z: [0, axis_limit]
            Where x_c, y_c is the mean value of x and y coordinates
        figsize: (float): figure size in inch.
    """

    show_img = img is not None
    if num_instances < 0:
        num_instances = len(pose_result)
    else:
        if len(pose_result) > num_instances:
            pose_result = pose_result[:num_instances]
        elif len(pose_result) < num_instances:
            pose_result += [dict()] * (num_instances - len(pose_result))
    num_axis = num_instances + 1 if show_img else num_instances

    plt.ioff()
    fig = plt.figure(figsize=(vis_height * num_axis * 0.01, vis_height * 0.01))

    if show_img:
        img = mmcv.imread(img, channel_order='bgr')
        img = mmcv.bgr2rgb(img)
        img = mmcv.imrescale(img, scale=vis_height / img.shape[0])

        ax_img = fig.add_subplot(1, num_axis, 1)
        ax_img.get_xaxis().set_visible(False)
        ax_img.get_yaxis().set_visible(False)
        ax_img.set_axis_off()
        ax_img.set_title('Input')
        ax_img.imshow(img, aspect='equal')

    for idx, res in enumerate(pose_result):
        dummy = len(res) == 0
        kpts = np.zeros((1, 3)) if dummy else res['keypoints_3d']
        if kpts.shape[1] == 3:
            kpts = np.concatenate([kpts, np.ones((kpts.shape[0], 1))], axis=1)
        valid = kpts[:, 3] >= kpt_score_thr

        ax_idx = idx + 2 if show_img else idx + 1
        ax = fig.add_subplot(1, num_axis, ax_idx, projection='3d')
        ax.view_init(
            elev=axis_elev,
            azim=axis_azimuth,
        )
        x_c = np.mean(kpts[valid, 0]) if sum(valid) > 0 else 0
        y_c = np.mean(kpts[valid, 1]) if sum(valid) > 0 else 0
        ax.set_xlim3d([x_c - axis_limit / 2, x_c + axis_limit / 2])
        ax.set_ylim3d([y_c - axis_limit / 2, y_c + axis_limit / 2])
        ax.set_zlim3d([0, axis_limit])
        ax.set_aspect('auto')
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_zticks([])
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_zticklabels([])
        ax.dist = axis_dist

        if not dummy and pose_kpt_color is not None:
            pose_kpt_color = np.array(pose_kpt_color)
            assert len(pose_kpt_color) == len(kpts)
            x_3d, y_3d, z_3d = np.split(kpts[:, :3], [1, 2], axis=1)
            # matplotlib uses RGB color in [0, 1] value range
            _color = pose_kpt_color[..., ::-1] / 255.
            ax.scatter(
                x_3d[valid],
                y_3d[valid],
                z_3d[valid],
                marker='o',
                color=_color[valid],
            )

        if not dummy and skeleton is not None and pose_link_color is not None:
            pose_link_color = np.array(pose_link_color)
            assert len(pose_link_color) == len(skeleton)
            for link, link_color in zip(skeleton, pose_link_color):
                link_indices = [_i for _i in link]
                xs_3d = kpts[link_indices, 0]
                ys_3d = kpts[link_indices, 1]
                zs_3d = kpts[link_indices, 2]
                kpt_score = kpts[link_indices, 3]
                if kpt_score.min() > kpt_score_thr:
                    # matplotlib uses RGB color in [0, 1] value range
                    _color = link_color[::-1] / 255.
                    ax.plot(xs_3d, ys_3d, zs_3d, color=_color, zdir='z')

        if 'title' in res:
            ax.set_title(res['title'])

    # convert figure to numpy array
    fig.tight_layout()
    fig.canvas.draw()
    img_w, img_h = fig.canvas.get_width_height()
    img_vis = np.frombuffer(
        fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(img_h, img_w, -1)
    img_vis = mmcv.rgb2bgr(img_vis)

    plt.close(fig)

    return img_vis


def imshow_mesh_3d(img,
                   vertices,
                   faces,
                   camera_center,
                   focal_length,
                   colors=(76, 76, 204)):
    """Render 3D meshes on background image.

    Args:
        img(np.ndarray): Background image.
        vertices (list of np.ndarray): Vetrex coordinates in camera space.
        faces (list of np.ndarray): Faces of meshes.
        camera_center ([2]): Center pixel.
        focal_length ([2]): Focal length of camera.
        colors (list[str or tuple or Color]): A list of mesh colors.
    """

    H, W, C = img.shape

    if not has_pyrender:
        warnings.warn('pyrender package is not installed.')
        return img

    if not has_trimesh:
        warnings.warn('trimesh package is not installed.')
        return img

    try:
        renderer = pyrender.OffscreenRenderer(
            viewport_width=W, viewport_height=H)
    except (ImportError, RuntimeError):
        warnings.warn('pyrender package is not installed correctly.')
        return img

    if not isinstance(colors, list):
        colors = [colors for _ in range(len(vertices))]
    colors = [color_val(c) for c in colors]

    depth_map = np.ones([H, W]) * np.inf
    output_img = img
    for idx in range(len(vertices)):
        color = colors[idx]
        color = [c / 255.0 for c in color]
        color.append(1.0)
        vert = vertices[idx]
        face = faces[idx]

        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.2, alphaMode='OPAQUE', baseColorFactor=color)

        mesh = trimesh.Trimesh(vert, face)
        rot = trimesh.transformations.rotation_matrix(
            np.radians(180), [1, 0, 0])
        mesh.apply_transform(rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        scene = pyrender.Scene(ambient_light=(0.5, 0.5, 0.5))
        scene.add(mesh, 'mesh')

        camera_pose = np.eye(4)
        camera = pyrender.IntrinsicsCamera(
            fx=focal_length[0],
            fy=focal_length[1],
            cx=camera_center[0],
            cy=camera_center[1],
            zfar=1e5)
        scene.add(camera, pose=camera_pose)

        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
        light_pose = np.eye(4)

        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        color, rend_depth = renderer.render(
            scene, flags=pyrender.RenderFlags.RGBA)

        valid_mask = (rend_depth < depth_map) * (rend_depth > 0)
        depth_map[valid_mask] = rend_depth[valid_mask]
        valid_mask = valid_mask[:, :, None]
        output_img = (
            valid_mask * color[:, :, :3] + (1 - valid_mask) * output_img)

    return output_img