File size: 43,809 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
"""
Parts of the code are taken or adapted from
https://github.com/mkocabas/EpipolarPose/blob/master/lib/utils/img_utils.py
"""
import torch
import numpy as np
from skimage.transform import rotate, resize
from skimage.filters import gaussian
import random
import cv2
from typing import List, Dict, Tuple
from yacs.config import CfgNode

def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None):
    """Increase the size of the bounding box to match the target shape."""
    if target_aspect_ratio is None:
        return input_shape

    try:
        w , h = input_shape
    except (ValueError, TypeError):
        return input_shape

    w_t, h_t = target_aspect_ratio
    if h / w < h_t / w_t:
        h_new = max(w * h_t / w_t, h)
        w_new = w
    else:
        h_new = h
        w_new = max(h * w_t / h_t, w)
    if h_new < h or w_new < w:
        breakpoint()
    return np.array([w_new, h_new])

def do_augmentation(aug_config: CfgNode) -> Tuple:
    """
    Compute random augmentation parameters.
    Args:
        aug_config (CfgNode): Config containing augmentation parameters.
    Returns:
        scale (float): Box rescaling factor.
        rot (float): Random image rotation.
        do_flip (bool): Whether to flip image or not.
        do_extreme_crop (bool): Whether to apply extreme cropping (as proposed in EFT).
        color_scale (List): Color rescaling factor
        tx (float): Random translation along the x axis.
        ty (float): Random translation along the y axis. 
    """

    tx = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
    ty = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
    scale = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.SCALE_FACTOR + 1.0
    rot = np.clip(np.random.randn(), -2.0,
                  2.0) * aug_config.ROT_FACTOR if random.random() <= aug_config.ROT_AUG_RATE else 0
    do_flip = aug_config.DO_FLIP and random.random() <= aug_config.FLIP_AUG_RATE
    do_extreme_crop = random.random() <= aug_config.EXTREME_CROP_AUG_RATE
    extreme_crop_lvl = aug_config.get('EXTREME_CROP_AUG_LEVEL', 0)
    # extreme_crop_lvl = 0
    c_up = 1.0 + aug_config.COLOR_SCALE
    c_low = 1.0 - aug_config.COLOR_SCALE
    color_scale = [random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]
    return scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty

def rotate_2d(pt_2d: np.array, rot_rad: float) -> np.array:
    """
    Rotate a 2D point on the x-y plane.
    Args:
        pt_2d (np.array): Input 2D point with shape (2,).
        rot_rad (float): Rotation angle
    Returns:
        np.array: Rotated 2D point.
    """
    x = pt_2d[0]
    y = pt_2d[1]
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)
    xx = x * cs - y * sn
    yy = x * sn + y * cs
    return np.array([xx, yy], dtype=np.float32)


def gen_trans_from_patch_cv(c_x: float, c_y: float,
                            src_width: float, src_height: float,
                            dst_width: float, dst_height: float,
                            scale: float, rot: float) -> np.array:
    """
    Create transformation matrix for the bounding box crop.
    Args:
        c_x (float): Bounding box center x coordinate in the original image.
        c_y (float): Bounding box center y coordinate in the original image.
        src_width (float): Bounding box width.
        src_height (float): Bounding box height.
        dst_width (float): Output box width.
        dst_height (float): Output box height.
        scale (float): Rescaling factor for the bounding box (augmentation).
        rot (float): Random rotation applied to the box.
    Returns:
        trans (np.array): Target geometric transformation.
    """
    # augment size with scale
    src_w = src_width * scale
    src_h = src_height * scale
    src_center = np.zeros(2)
    src_center[0] = c_x
    src_center[1] = c_y
    # augment rotation
    rot_rad = np.pi * rot / 180
    src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
    src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)

    dst_w = dst_width
    dst_h = dst_height
    dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
    dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
    dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = src_center
    src[1, :] = src_center + src_downdir
    src[2, :] = src_center + src_rightdir

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = dst_center
    dst[1, :] = dst_center + dst_downdir
    dst[2, :] = dst_center + dst_rightdir

    trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def trans_point2d(pt_2d: np.array, trans: np.array):
    """
    Transform a 2D point using translation matrix trans.
    Args:
        pt_2d (np.array): Input 2D point with shape (2,).
        trans (np.array): Transformation matrix.
    Returns:
        np.array: Transformed 2D point.
    """
    src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T
    dst_pt = np.dot(trans, src_pt)
    return dst_pt[0:2]

def get_transform(center, scale, res, rot=0):
    """Generate transformation matrix."""
    """Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
    h = 200 * scale
    t = np.zeros((3, 3))
    t[0, 0] = float(res[1]) / h
    t[1, 1] = float(res[0]) / h
    t[0, 2] = res[1] * (-float(center[0]) / h + .5)
    t[1, 2] = res[0] * (-float(center[1]) / h + .5)
    t[2, 2] = 1
    if not rot == 0:
        rot = -rot  # To match direction of rotation from cropping
        rot_mat = np.zeros((3, 3))
        rot_rad = rot * np.pi / 180
        sn, cs = np.sin(rot_rad), np.cos(rot_rad)
        rot_mat[0, :2] = [cs, -sn]
        rot_mat[1, :2] = [sn, cs]
        rot_mat[2, 2] = 1
        # Need to rotate around center
        t_mat = np.eye(3)
        t_mat[0, 2] = -res[1] / 2
        t_mat[1, 2] = -res[0] / 2
        t_inv = t_mat.copy()
        t_inv[:2, 2] *= -1
        t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
    return t


def transform(pt, center, scale, res, invert=0, rot=0, as_int=True):
    """Transform pixel location to different reference."""
    """Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        t = np.linalg.inv(t)
    new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
    new_pt = np.dot(t, new_pt)
    if as_int:
        new_pt = new_pt.astype(int)
    return new_pt[:2] + 1

def crop_img(img, ul, br, border_mode=cv2.BORDER_CONSTANT, border_value=0):
    c_x = (ul[0] + br[0])/2
    c_y = (ul[1] + br[1])/2
    bb_width = patch_width = br[0] - ul[0]
    bb_height = patch_height = br[1] - ul[1]
    trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, 1.0, 0)
    img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), 
                                flags=cv2.INTER_LINEAR, 
                                borderMode=border_mode,
                                borderValue=border_value
                        )
    
    # Force borderValue=cv2.BORDER_CONSTANT for alpha channel
    if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
        img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)), 
                                            flags=cv2.INTER_LINEAR, 
                                            borderMode=cv2.BORDER_CONSTANT,
                            )

    return img_patch

def generate_image_patch_skimage(img: np.array, c_x: float, c_y: float,
                                 bb_width: float, bb_height: float,
                                 patch_width: float, patch_height: float,
                                 do_flip: bool, scale: float, rot: float,
                                 border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
    """
    Crop image according to the supplied bounding box.
    Args:
        img (np.array): Input image of shape (H, W, 3)
        c_x (float): Bounding box center x coordinate in the original image.
        c_y (float): Bounding box center y coordinate in the original image.
        bb_width (float): Bounding box width.
        bb_height (float): Bounding box height.
        patch_width (float): Output box width.
        patch_height (float): Output box height.
        do_flip (bool): Whether to flip image or not.
        scale (float): Rescaling factor for the bounding box (augmentation).
        rot (float): Random rotation applied to the box.
    Returns:
        img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
        trans (np.array): Transformation matrix.
    """
    
    img_height, img_width, img_channels = img.shape
    if do_flip:
       img = img[:, ::-1, :]
       c_x = img_width - c_x - 1

    trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)

    #img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), flags=cv2.INTER_LINEAR)

    # skimage
    center = np.zeros(2)
    center[0] = c_x
    center[1] = c_y
    res = np.zeros(2)
    res[0] = patch_width
    res[1] = patch_height
    # assumes bb_width = bb_height
    # assumes patch_width = patch_height
    assert bb_width == bb_height, f'{bb_width=} != {bb_height=}'
    assert patch_width == patch_height, f'{patch_width=} != {patch_height=}'
    scale1 = scale*bb_width/200.
    
    # Upper left point
    ul = np.array(transform([1, 1], center, scale1, res, invert=1, as_int=False)) - 1
    # Bottom right point
    br = np.array(transform([res[0] + 1,
                             res[1] + 1], center, scale1, res, invert=1, as_int=False)) - 1

    # Padding so that when rotated proper amount of context is included
    try:
        pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) + 1
    except:
        breakpoint()
    if not rot == 0:
        ul -= pad
        br += pad


    if False:
        # Old way of cropping image
        ul_int = ul.astype(int)
        br_int = br.astype(int)
        new_shape = [br_int[1] - ul_int[1], br_int[0] - ul_int[0]]
        if len(img.shape) > 2:
            new_shape += [img.shape[2]]
        new_img = np.zeros(new_shape)

        # Range to fill new array
        new_x = max(0, -ul_int[0]), min(br_int[0], len(img[0])) - ul_int[0]
        new_y = max(0, -ul_int[1]), min(br_int[1], len(img)) - ul_int[1]
        # Range to sample from original image
        old_x = max(0, ul_int[0]), min(len(img[0]), br_int[0])
        old_y = max(0, ul_int[1]), min(len(img), br_int[1])
        new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
                                                        old_x[0]:old_x[1]]

    # New way of cropping image
    new_img = crop_img(img, ul, br, border_mode=border_mode, border_value=border_value).astype(np.float32)

    # print(f'{new_img.shape=}')
    # print(f'{new_img1.shape=}')
    # print(f'{np.allclose(new_img, new_img1)=}')
    # print(f'{img.dtype=}')


    if not rot == 0:
        # Remove padding

        new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot)
        new_img = new_img[pad:-pad, pad:-pad]

    if new_img.shape[0] < 1 or new_img.shape[1] < 1:
        print(f'{img.shape=}')
        print(f'{new_img.shape=}')
        print(f'{ul=}')
        print(f'{br=}')
        print(f'{pad=}')
        print(f'{rot=}')

        breakpoint()

    # resize image
    new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res)
    
    new_img = np.clip(new_img, 0, 255).astype(np.uint8)

    return new_img, trans


def generate_image_patch_cv2(img: np.array, c_x: float, c_y: float,
                             bb_width: float, bb_height: float,
                             patch_width: float, patch_height: float,
                             do_flip: bool, scale: float, rot: float,
                             border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
    """
    Crop the input image and return the crop and the corresponding transformation matrix.
    Args:
        img (np.array): Input image of shape (H, W, 3)
        c_x (float): Bounding box center x coordinate in the original image.
        c_y (float): Bounding box center y coordinate in the original image.
        bb_width (float): Bounding box width.
        bb_height (float): Bounding box height.
        patch_width (float): Output box width.
        patch_height (float): Output box height.
        do_flip (bool): Whether to flip image or not.
        scale (float): Rescaling factor for the bounding box (augmentation).
        rot (float): Random rotation applied to the box.
    Returns:
        img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
        trans (np.array): Transformation matrix.
    """

    img_height, img_width, img_channels = img.shape
    if do_flip:
        img = img[:, ::-1, :]
        c_x = img_width - c_x - 1


    trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)

    img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), 
                        flags=cv2.INTER_LINEAR, 
                        borderMode=border_mode,
                        borderValue=border_value,
                )
    # Force borderValue=cv2.BORDER_CONSTANT for alpha channel
    if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
        img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)), 
                                            flags=cv2.INTER_LINEAR, 
                                            borderMode=cv2.BORDER_CONSTANT,
                            )

    return img_patch, trans


def convert_cvimg_to_tensor(cvimg: np.array):
    """
    Convert image from HWC to CHW format.
    Args:
        cvimg (np.array): Image of shape (H, W, 3) as loaded by OpenCV.
    Returns:
        np.array: Output image of shape (3, H, W).
    """
    # from h,w,c(OpenCV) to c,h,w
    img = cvimg.copy()
    img = np.transpose(img, (2, 0, 1))
    # from int to float
    img = img.astype(np.float32)
    return img

def fliplr_params(mano_params: Dict, has_mano_params: Dict) -> Tuple[Dict, Dict]:
    """
    Flip MANO parameters when flipping the image.
    Args:
        mano_params (Dict): MANO parameter annotations.
        has_mano_params (Dict): Whether MANO annotations are valid.
    Returns:
        Dict, Dict: Flipped MANO parameters and valid flags.
    """
    global_orient = mano_params['global_orient'].copy()
    hand_pose = mano_params['hand_pose'].copy()
    betas = mano_params['betas'].copy()
    has_global_orient = has_mano_params['global_orient'].copy()
    has_hand_pose = has_mano_params['hand_pose'].copy()
    has_betas = has_mano_params['betas'].copy()

    global_orient[1::3] *= -1
    global_orient[2::3] *= -1
    hand_pose[1::3] *= -1
    hand_pose[2::3] *= -1

    mano_params = {'global_orient': global_orient.astype(np.float32),
                   'hand_pose': hand_pose.astype(np.float32),
                   'betas': betas.astype(np.float32)
                  }

    has_mano_params = {'global_orient': has_global_orient,
                       'hand_pose': has_hand_pose,
                       'betas': has_betas
                      }

    return mano_params, has_mano_params


def fliplr_keypoints(joints: np.array, width: float, flip_permutation: List[int]) -> np.array:
    """
    Flip 2D or 3D keypoints.
    Args:
        joints (np.array): Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence.
        flip_permutation (List): Permutation to apply after flipping.
    Returns:
        np.array: Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively.
    """
    joints = joints.copy()
    # Flip horizontal
    joints[:, 0] = width - joints[:, 0] - 1
    joints = joints[flip_permutation, :]

    return joints

def keypoint_3d_processing(keypoints_3d: np.array, flip_permutation: List[int], rot: float, do_flip: float) -> np.array:
    """
    Process 3D keypoints (rotation/flipping).
    Args:
        keypoints_3d (np.array): Input array of shape (N, 4) containing the 3D keypoints and confidence.
        flip_permutation (List): Permutation to apply after flipping.
        rot (float): Random rotation applied to the keypoints.
        do_flip (bool): Whether to flip keypoints or not.
    Returns:
        np.array: Transformed 3D keypoints with shape (N, 4).
    """
    if do_flip:
        keypoints_3d = fliplr_keypoints(keypoints_3d, 1, flip_permutation)
    # in-plane rotation
    rot_mat = np.eye(3)
    if not rot == 0:
        rot_rad = -rot * np.pi / 180
        sn,cs = np.sin(rot_rad), np.cos(rot_rad)
        rot_mat[0,:2] = [cs, -sn]
        rot_mat[1,:2] = [sn, cs]
    keypoints_3d[:, :-1] = np.einsum('ij,kj->ki', rot_mat, keypoints_3d[:, :-1])
    # flip the x coordinates
    keypoints_3d = keypoints_3d.astype('float32')
    return keypoints_3d

def rot_aa(aa: np.array, rot: float) -> np.array:
    """
    Rotate axis angle parameters.
    Args:
        aa (np.array): Axis-angle vector of shape (3,).
        rot (np.array): Rotation angle in degrees.
    Returns:
        np.array: Rotated axis-angle vector.
    """
    # pose parameters
    R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
                  [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
                  [0, 0, 1]])
    # find the rotation of the hand in camera frame
    per_rdg, _ = cv2.Rodrigues(aa)
    # apply the global rotation to the global orientation
    resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg))
    aa = (resrot.T)[0]
    return aa.astype(np.float32)

def mano_param_processing(mano_params: Dict, has_mano_params: Dict, rot: float, do_flip: bool) -> Tuple[Dict, Dict]:
    """
    Apply random augmentations to the MANO parameters.
    Args:
        mano_params (Dict): MANO parameter annotations.
        has_mano_params (Dict): Whether mano annotations are valid.
        rot (float): Random rotation applied to the keypoints.
        do_flip (bool): Whether to flip keypoints or not.
    Returns:
        Dict, Dict: Transformed MANO parameters and valid flags.
    """
    if do_flip:
        mano_params, has_mano_params = fliplr_params(mano_params, has_mano_params)
    mano_params['global_orient'] = rot_aa(mano_params['global_orient'], rot)
    return mano_params, has_mano_params



def get_example(img_path: str|np.ndarray, center_x: float, center_y: float,
                width: float, height: float,
                keypoints_2d: np.array, keypoints_3d: np.array,
                mano_params: Dict, has_mano_params: Dict,
                flip_kp_permutation: List[int],
                patch_width: int, patch_height: int,
                mean: np.array, std: np.array,
                do_augment: bool, is_right: bool, augm_config: CfgNode,
                is_bgr: bool = True,
                use_skimage_antialias: bool = False,
                border_mode: int = cv2.BORDER_CONSTANT,
                return_trans: bool = False) -> Tuple:
    """
    Get an example from the dataset and (possibly) apply random augmentations.
    Args:
        img_path (str): Image filename
        center_x (float): Bounding box center x coordinate in the original image.
        center_y (float): Bounding box center y coordinate in the original image.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array with shape (N,3) containing the 2D keypoints in the original image coordinates.
        keypoints_3d (np.array): Array with shape (N,4) containing the 3D keypoints.
        mano_params (Dict): MANO parameter annotations.
        has_mano_params (Dict): Whether MANO annotations are valid.
        flip_kp_permutation (List): Permutation to apply to the keypoints after flipping.
        patch_width (float): Output box width.
        patch_height (float): Output box height.
        mean (np.array): Array of shape (3,) containing the mean for normalizing the input image.
        std (np.array): Array of shape (3,) containing the std for normalizing the input image.
        do_augment (bool): Whether to apply data augmentation or not.
        aug_config (CfgNode): Config containing augmentation parameters.
    Returns:
        return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size
        img_patch (np.array): Cropped image patch of shape (3, patch_height, patch_height)
        keypoints_2d (np.array): Array with shape (N,3) containing the transformed 2D keypoints.
        keypoints_3d (np.array): Array with shape (N,4) containing the transformed 3D keypoints.
        mano_params (Dict): Transformed MANO parameters.
        has_mano_params (Dict): Valid flag for transformed MANO parameters.
        img_size (np.array): Image size of the original image.
        """
    if isinstance(img_path, str):
        # 1. load image
        cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        if not isinstance(cvimg, np.ndarray):
            raise IOError("Fail to read %s" % img_path)
    elif isinstance(img_path, np.ndarray):
        cvimg = img_path
    else:
        raise TypeError('img_path must be either a string or a numpy array')
    img_height, img_width, img_channels = cvimg.shape

    img_size = np.array([img_height, img_width])

    # 2. get augmentation params
    if do_augment:
        scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = do_augmentation(augm_config)
    else:
        scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = 1.0, 0, False, False, 0, [1.0, 1.0, 1.0], 0., 0.

    # if it's a left hand, we flip
    if not is_right:
        do_flip = True

    if width < 1 or height < 1:
        breakpoint()

    if do_extreme_crop:
        if extreme_crop_lvl == 0:
            center_x1, center_y1, width1, height1 = extreme_cropping(center_x, center_y, width, height, keypoints_2d)
        elif extreme_crop_lvl == 1:
            center_x1, center_y1, width1, height1 = extreme_cropping_aggressive(center_x, center_y, width, height, keypoints_2d)

        THRESH = 4
        if width1 < THRESH or height1 < THRESH:
            # print(f'{do_extreme_crop=}')
            # print(f'width: {width}, height: {height}')
            # print(f'width1: {width1}, height1: {height1}')
            # print(f'center_x: {center_x}, center_y: {center_y}')
            # print(f'center_x1: {center_x1}, center_y1: {center_y1}')
            # print(f'keypoints_2d: {keypoints_2d}')
            # print(f'\n\n', flush=True)
            # breakpoint()
            pass
            # print(f'skip ==> width1: {width1}, height1: {height1}, width: {width}, height: {height}')
        else:
            center_x, center_y, width, height = center_x1, center_y1, width1, height1

    center_x += width * tx
    center_y += height * ty

    # Process 3D keypoints
    keypoints_3d = keypoint_3d_processing(keypoints_3d, flip_kp_permutation, rot, do_flip)

    # 3. generate image patch
    if use_skimage_antialias:
        # Blur image to avoid aliasing artifacts
        downsampling_factor = (patch_width / (width*scale))
        if downsampling_factor > 1.1:
            cvimg  = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True, truncate=3.0)

    img_patch_cv, trans = generate_image_patch_cv2(cvimg,
                                                    center_x, center_y,
                                                    width, height,
                                                    patch_width, patch_height,
                                                    do_flip, scale, rot, 
                                                    border_mode=border_mode)
        # img_patch_cv, trans = generate_image_patch_skimage(cvimg,
        #                                                 center_x, center_y,
        #                                                 width, height,
        #                                                 patch_width, patch_height,
        #                                                 do_flip, scale, rot, 
        #                                                 border_mode=border_mode)

    image = img_patch_cv.copy()
    if is_bgr:
        image = image[:, :, ::-1]
    img_patch_cv = image.copy()
    img_patch = convert_cvimg_to_tensor(image)


    mano_params, has_mano_params = mano_param_processing(mano_params, has_mano_params, rot, do_flip)

    # apply normalization
    for n_c in range(min(img_channels, 3)):
        img_patch[n_c, :, :] = np.clip(img_patch[n_c, :, :] * color_scale[n_c], 0, 255)
        if mean is not None and std is not None:
            img_patch[n_c, :, :] = (img_patch[n_c, :, :] - mean[n_c]) / std[n_c]
    if do_flip:
        keypoints_2d = fliplr_keypoints(keypoints_2d, img_width, flip_kp_permutation)


    for n_jt in range(len(keypoints_2d)):
        keypoints_2d[n_jt, 0:2] = trans_point2d(keypoints_2d[n_jt, 0:2], trans)
    keypoints_2d[:, :-1] = keypoints_2d[:, :-1] / patch_width - 0.5

    if not return_trans:
        return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size
    else:
        return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size, trans

def crop_to_hips(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
    """
    Extreme cropping: Crop the box up to the hip locations.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    lower_body_keypoints = [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25+0, 25+1, 25+4, 25+5]
    keypoints_2d[lower_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.1 * scale[0]
        height = 1.1 * scale[1]
    return center_x, center_y, width, height


def crop_to_shoulders(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box up to the shoulder locations.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16]]
    keypoints_2d[lower_body_keypoints, :] = 0
    center, scale = get_bbox(keypoints_2d)
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.2 * scale[0]
        height = 1.2 * scale[1]
    return center_x, center_y, width, height

def crop_to_head(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box and keep on only the head.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16]]
    keypoints_2d[lower_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.3 * scale[0]
        height = 1.3 * scale[1]
    return center_x, center_y, width, height

def crop_torso_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box and keep on only the torso.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    nontorso_body_keypoints = [0, 3, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 4, 5, 6, 7, 10, 11, 13, 17, 18]]
    keypoints_2d[nontorso_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.1 * scale[0]
        height = 1.1 * scale[1]
    return center_x, center_y, width, height

def crop_rightarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box and keep on only the right arm.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    nonrightarm_body_keypoints = [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
    keypoints_2d[nonrightarm_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.1 * scale[0]
        height = 1.1 * scale[1]
    return center_x, center_y, width, height

def crop_leftarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box and keep on only the left arm.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    nonleftarm_body_keypoints = [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18]]
    keypoints_2d[nonleftarm_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.1 * scale[0]
        height = 1.1 * scale[1]
    return center_x, center_y, width, height

def crop_legs_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box and keep on only the legs.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    nonlegs_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18] + [25 + i for i in [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]]
    keypoints_2d[nonlegs_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.1 * scale[0]
        height = 1.1 * scale[1]
    return center_x, center_y, width, height

def crop_rightleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box and keep on only the right leg.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    nonrightleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [25 + i for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
    keypoints_2d[nonrightleg_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.1 * scale[0]
        height = 1.1 * scale[1]
    return center_x, center_y, width, height

def crop_leftleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
    """
    Extreme cropping: Crop the box and keep on only the left leg.
    Args:
        center_x (float): x coordinate of the bounding box center.
        center_y (float): y coordinate of the bounding box center.
        width (float): Bounding box width.
        height (float): Bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        center_x (float): x coordinate of the new bounding box center.
        center_y (float): y coordinate of the new bounding box center.
        width (float): New bounding box width.
        height (float): New bounding box height.
    """
    keypoints_2d = keypoints_2d.copy()
    nonleftleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24] + [25 + i for i in [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
    keypoints_2d[nonleftleg_body_keypoints, :] = 0
    if keypoints_2d[:, -1].sum() > 1:
        center, scale = get_bbox(keypoints_2d)
        center_x = center[0]
        center_y = center[1]
        width = 1.1 * scale[0]
        height = 1.1 * scale[1]
    return center_x, center_y, width, height

def full_body(keypoints_2d: np.array) -> bool:
    """
    Check if all main body joints are visible.
    Args:
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        bool: True if all main body joints are visible.
    """

    body_keypoints_openpose = [2, 3, 4, 5, 6, 7, 10, 11, 13, 14]
    body_keypoints = [25 + i for i in [8, 7, 6, 9, 10, 11, 1, 0, 4, 5]]
    return (np.maximum(keypoints_2d[body_keypoints, -1], keypoints_2d[body_keypoints_openpose, -1]) > 0).sum() == len(body_keypoints)

def upper_body(keypoints_2d: np.array):
    """
    Check if all upper body joints are visible.
    Args:
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
    Returns:
        bool: True if all main body joints are visible.
    """
    lower_body_keypoints_openpose = [10, 11, 13, 14]
    lower_body_keypoints = [25 + i for i in [1, 0, 4, 5]]
    upper_body_keypoints_openpose = [0, 1, 15, 16, 17, 18]
    upper_body_keypoints = [25+8, 25+9, 25+12, 25+13, 25+17, 25+18]
    return ((keypoints_2d[lower_body_keypoints + lower_body_keypoints_openpose, -1] > 0).sum() == 0)\
       and ((keypoints_2d[upper_body_keypoints + upper_body_keypoints_openpose, -1] > 0).sum() >= 2)

def get_bbox(keypoints_2d: np.array, rescale: float = 1.2) -> Tuple:
    """
    Get center and scale for bounding box from openpose detections.
    Args:
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
        rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
    Returns:
        center (np.array): Array of shape (2,) containing the new bounding box center.
        scale (float): New bounding box scale.
    """
    valid = keypoints_2d[:,-1] > 0
    valid_keypoints = keypoints_2d[valid][:,:-1]
    center = 0.5 * (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))
    bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0))
    # adjust bounding box tightness
    scale = bbox_size
    scale *= rescale
    return center, scale

def extreme_cropping(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
    """
    Perform extreme cropping
    Args:
        center_x (float): x coordinate of bounding box center.
        center_y (float): y coordinate of bounding box center.
        width (float): bounding box width.
        height (float): bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
        rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
    Returns:
        center_x (float): x coordinate of bounding box center.
        center_y (float): y coordinate of bounding box center.
        width (float): bounding box width.
        height (float): bounding box height.
    """
    p = torch.rand(1).item()
    if full_body(keypoints_2d):
        if p < 0.7:
            center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.9:
            center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
        else:
            center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
    elif upper_body(keypoints_2d):
        if p < 0.9:
            center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
        else:
            center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)

    return center_x, center_y, max(width, height), max(width, height)

def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
    """
    Perform aggressive extreme cropping
    Args:
        center_x (float): x coordinate of bounding box center.
        center_y (float): y coordinate of bounding box center.
        width (float): bounding box width.
        height (float): bounding box height.
        keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
        rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
    Returns:
        center_x (float): x coordinate of bounding box center.
        center_y (float): y coordinate of bounding box center.
        width (float): bounding box width.
        height (float): bounding box height.
    """
    p = torch.rand(1).item()
    if full_body(keypoints_2d):
        if p < 0.2:
            center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.3:
            center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.4:
            center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.5:
            center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.6:
            center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.7:
            center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.8:
            center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.9:
            center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d)
        else:
            center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d)
    elif upper_body(keypoints_2d):
        if p < 0.2:
            center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.4:
            center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.6:
            center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
        elif p < 0.8:
            center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
        else:
            center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
    return center_x, center_y, max(width, height), max(width, height)