Spaces:
Build error
Build error
File size: 43,809 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
"""
Parts of the code are taken or adapted from
https://github.com/mkocabas/EpipolarPose/blob/master/lib/utils/img_utils.py
"""
import torch
import numpy as np
from skimage.transform import rotate, resize
from skimage.filters import gaussian
import random
import cv2
from typing import List, Dict, Tuple
from yacs.config import CfgNode
def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None):
"""Increase the size of the bounding box to match the target shape."""
if target_aspect_ratio is None:
return input_shape
try:
w , h = input_shape
except (ValueError, TypeError):
return input_shape
w_t, h_t = target_aspect_ratio
if h / w < h_t / w_t:
h_new = max(w * h_t / w_t, h)
w_new = w
else:
h_new = h
w_new = max(h * w_t / h_t, w)
if h_new < h or w_new < w:
breakpoint()
return np.array([w_new, h_new])
def do_augmentation(aug_config: CfgNode) -> Tuple:
"""
Compute random augmentation parameters.
Args:
aug_config (CfgNode): Config containing augmentation parameters.
Returns:
scale (float): Box rescaling factor.
rot (float): Random image rotation.
do_flip (bool): Whether to flip image or not.
do_extreme_crop (bool): Whether to apply extreme cropping (as proposed in EFT).
color_scale (List): Color rescaling factor
tx (float): Random translation along the x axis.
ty (float): Random translation along the y axis.
"""
tx = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
ty = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
scale = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.SCALE_FACTOR + 1.0
rot = np.clip(np.random.randn(), -2.0,
2.0) * aug_config.ROT_FACTOR if random.random() <= aug_config.ROT_AUG_RATE else 0
do_flip = aug_config.DO_FLIP and random.random() <= aug_config.FLIP_AUG_RATE
do_extreme_crop = random.random() <= aug_config.EXTREME_CROP_AUG_RATE
extreme_crop_lvl = aug_config.get('EXTREME_CROP_AUG_LEVEL', 0)
# extreme_crop_lvl = 0
c_up = 1.0 + aug_config.COLOR_SCALE
c_low = 1.0 - aug_config.COLOR_SCALE
color_scale = [random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]
return scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty
def rotate_2d(pt_2d: np.array, rot_rad: float) -> np.array:
"""
Rotate a 2D point on the x-y plane.
Args:
pt_2d (np.array): Input 2D point with shape (2,).
rot_rad (float): Rotation angle
Returns:
np.array: Rotated 2D point.
"""
x = pt_2d[0]
y = pt_2d[1]
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
xx = x * cs - y * sn
yy = x * sn + y * cs
return np.array([xx, yy], dtype=np.float32)
def gen_trans_from_patch_cv(c_x: float, c_y: float,
src_width: float, src_height: float,
dst_width: float, dst_height: float,
scale: float, rot: float) -> np.array:
"""
Create transformation matrix for the bounding box crop.
Args:
c_x (float): Bounding box center x coordinate in the original image.
c_y (float): Bounding box center y coordinate in the original image.
src_width (float): Bounding box width.
src_height (float): Bounding box height.
dst_width (float): Output box width.
dst_height (float): Output box height.
scale (float): Rescaling factor for the bounding box (augmentation).
rot (float): Random rotation applied to the box.
Returns:
trans (np.array): Target geometric transformation.
"""
# augment size with scale
src_w = src_width * scale
src_h = src_height * scale
src_center = np.zeros(2)
src_center[0] = c_x
src_center[1] = c_y
# augment rotation
rot_rad = np.pi * rot / 180
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
dst_w = dst_width
dst_h = dst_height
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = src_center
src[1, :] = src_center + src_downdir
src[2, :] = src_center + src_rightdir
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = dst_center
dst[1, :] = dst_center + dst_downdir
dst[2, :] = dst_center + dst_rightdir
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def trans_point2d(pt_2d: np.array, trans: np.array):
"""
Transform a 2D point using translation matrix trans.
Args:
pt_2d (np.array): Input 2D point with shape (2,).
trans (np.array): Transformation matrix.
Returns:
np.array: Transformed 2D point.
"""
src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T
dst_pt = np.dot(trans, src_pt)
return dst_pt[0:2]
def get_transform(center, scale, res, rot=0):
"""Generate transformation matrix."""
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
h = 200 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
if not rot == 0:
rot = -rot # To match direction of rotation from cropping
rot_mat = np.zeros((3, 3))
rot_rad = rot * np.pi / 180
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0, :2] = [cs, -sn]
rot_mat[1, :2] = [sn, cs]
rot_mat[2, 2] = 1
# Need to rotate around center
t_mat = np.eye(3)
t_mat[0, 2] = -res[1] / 2
t_mat[1, 2] = -res[0] / 2
t_inv = t_mat.copy()
t_inv[:2, 2] *= -1
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
return t
def transform(pt, center, scale, res, invert=0, rot=0, as_int=True):
"""Transform pixel location to different reference."""
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
t = get_transform(center, scale, res, rot=rot)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
new_pt = np.dot(t, new_pt)
if as_int:
new_pt = new_pt.astype(int)
return new_pt[:2] + 1
def crop_img(img, ul, br, border_mode=cv2.BORDER_CONSTANT, border_value=0):
c_x = (ul[0] + br[0])/2
c_y = (ul[1] + br[1])/2
bb_width = patch_width = br[0] - ul[0]
bb_height = patch_height = br[1] - ul[1]
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, 1.0, 0)
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
flags=cv2.INTER_LINEAR,
borderMode=border_mode,
borderValue=border_value
)
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
)
return img_patch
def generate_image_patch_skimage(img: np.array, c_x: float, c_y: float,
bb_width: float, bb_height: float,
patch_width: float, patch_height: float,
do_flip: bool, scale: float, rot: float,
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
"""
Crop image according to the supplied bounding box.
Args:
img (np.array): Input image of shape (H, W, 3)
c_x (float): Bounding box center x coordinate in the original image.
c_y (float): Bounding box center y coordinate in the original image.
bb_width (float): Bounding box width.
bb_height (float): Bounding box height.
patch_width (float): Output box width.
patch_height (float): Output box height.
do_flip (bool): Whether to flip image or not.
scale (float): Rescaling factor for the bounding box (augmentation).
rot (float): Random rotation applied to the box.
Returns:
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
trans (np.array): Transformation matrix.
"""
img_height, img_width, img_channels = img.shape
if do_flip:
img = img[:, ::-1, :]
c_x = img_width - c_x - 1
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
#img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), flags=cv2.INTER_LINEAR)
# skimage
center = np.zeros(2)
center[0] = c_x
center[1] = c_y
res = np.zeros(2)
res[0] = patch_width
res[1] = patch_height
# assumes bb_width = bb_height
# assumes patch_width = patch_height
assert bb_width == bb_height, f'{bb_width=} != {bb_height=}'
assert patch_width == patch_height, f'{patch_width=} != {patch_height=}'
scale1 = scale*bb_width/200.
# Upper left point
ul = np.array(transform([1, 1], center, scale1, res, invert=1, as_int=False)) - 1
# Bottom right point
br = np.array(transform([res[0] + 1,
res[1] + 1], center, scale1, res, invert=1, as_int=False)) - 1
# Padding so that when rotated proper amount of context is included
try:
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) + 1
except:
breakpoint()
if not rot == 0:
ul -= pad
br += pad
if False:
# Old way of cropping image
ul_int = ul.astype(int)
br_int = br.astype(int)
new_shape = [br_int[1] - ul_int[1], br_int[0] - ul_int[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(new_shape)
# Range to fill new array
new_x = max(0, -ul_int[0]), min(br_int[0], len(img[0])) - ul_int[0]
new_y = max(0, -ul_int[1]), min(br_int[1], len(img)) - ul_int[1]
# Range to sample from original image
old_x = max(0, ul_int[0]), min(len(img[0]), br_int[0])
old_y = max(0, ul_int[1]), min(len(img), br_int[1])
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
old_x[0]:old_x[1]]
# New way of cropping image
new_img = crop_img(img, ul, br, border_mode=border_mode, border_value=border_value).astype(np.float32)
# print(f'{new_img.shape=}')
# print(f'{new_img1.shape=}')
# print(f'{np.allclose(new_img, new_img1)=}')
# print(f'{img.dtype=}')
if not rot == 0:
# Remove padding
new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot)
new_img = new_img[pad:-pad, pad:-pad]
if new_img.shape[0] < 1 or new_img.shape[1] < 1:
print(f'{img.shape=}')
print(f'{new_img.shape=}')
print(f'{ul=}')
print(f'{br=}')
print(f'{pad=}')
print(f'{rot=}')
breakpoint()
# resize image
new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res)
new_img = np.clip(new_img, 0, 255).astype(np.uint8)
return new_img, trans
def generate_image_patch_cv2(img: np.array, c_x: float, c_y: float,
bb_width: float, bb_height: float,
patch_width: float, patch_height: float,
do_flip: bool, scale: float, rot: float,
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
"""
Crop the input image and return the crop and the corresponding transformation matrix.
Args:
img (np.array): Input image of shape (H, W, 3)
c_x (float): Bounding box center x coordinate in the original image.
c_y (float): Bounding box center y coordinate in the original image.
bb_width (float): Bounding box width.
bb_height (float): Bounding box height.
patch_width (float): Output box width.
patch_height (float): Output box height.
do_flip (bool): Whether to flip image or not.
scale (float): Rescaling factor for the bounding box (augmentation).
rot (float): Random rotation applied to the box.
Returns:
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
trans (np.array): Transformation matrix.
"""
img_height, img_width, img_channels = img.shape
if do_flip:
img = img[:, ::-1, :]
c_x = img_width - c_x - 1
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
flags=cv2.INTER_LINEAR,
borderMode=border_mode,
borderValue=border_value,
)
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
)
return img_patch, trans
def convert_cvimg_to_tensor(cvimg: np.array):
"""
Convert image from HWC to CHW format.
Args:
cvimg (np.array): Image of shape (H, W, 3) as loaded by OpenCV.
Returns:
np.array: Output image of shape (3, H, W).
"""
# from h,w,c(OpenCV) to c,h,w
img = cvimg.copy()
img = np.transpose(img, (2, 0, 1))
# from int to float
img = img.astype(np.float32)
return img
def fliplr_params(mano_params: Dict, has_mano_params: Dict) -> Tuple[Dict, Dict]:
"""
Flip MANO parameters when flipping the image.
Args:
mano_params (Dict): MANO parameter annotations.
has_mano_params (Dict): Whether MANO annotations are valid.
Returns:
Dict, Dict: Flipped MANO parameters and valid flags.
"""
global_orient = mano_params['global_orient'].copy()
hand_pose = mano_params['hand_pose'].copy()
betas = mano_params['betas'].copy()
has_global_orient = has_mano_params['global_orient'].copy()
has_hand_pose = has_mano_params['hand_pose'].copy()
has_betas = has_mano_params['betas'].copy()
global_orient[1::3] *= -1
global_orient[2::3] *= -1
hand_pose[1::3] *= -1
hand_pose[2::3] *= -1
mano_params = {'global_orient': global_orient.astype(np.float32),
'hand_pose': hand_pose.astype(np.float32),
'betas': betas.astype(np.float32)
}
has_mano_params = {'global_orient': has_global_orient,
'hand_pose': has_hand_pose,
'betas': has_betas
}
return mano_params, has_mano_params
def fliplr_keypoints(joints: np.array, width: float, flip_permutation: List[int]) -> np.array:
"""
Flip 2D or 3D keypoints.
Args:
joints (np.array): Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence.
flip_permutation (List): Permutation to apply after flipping.
Returns:
np.array: Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively.
"""
joints = joints.copy()
# Flip horizontal
joints[:, 0] = width - joints[:, 0] - 1
joints = joints[flip_permutation, :]
return joints
def keypoint_3d_processing(keypoints_3d: np.array, flip_permutation: List[int], rot: float, do_flip: float) -> np.array:
"""
Process 3D keypoints (rotation/flipping).
Args:
keypoints_3d (np.array): Input array of shape (N, 4) containing the 3D keypoints and confidence.
flip_permutation (List): Permutation to apply after flipping.
rot (float): Random rotation applied to the keypoints.
do_flip (bool): Whether to flip keypoints or not.
Returns:
np.array: Transformed 3D keypoints with shape (N, 4).
"""
if do_flip:
keypoints_3d = fliplr_keypoints(keypoints_3d, 1, flip_permutation)
# in-plane rotation
rot_mat = np.eye(3)
if not rot == 0:
rot_rad = -rot * np.pi / 180
sn,cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0,:2] = [cs, -sn]
rot_mat[1,:2] = [sn, cs]
keypoints_3d[:, :-1] = np.einsum('ij,kj->ki', rot_mat, keypoints_3d[:, :-1])
# flip the x coordinates
keypoints_3d = keypoints_3d.astype('float32')
return keypoints_3d
def rot_aa(aa: np.array, rot: float) -> np.array:
"""
Rotate axis angle parameters.
Args:
aa (np.array): Axis-angle vector of shape (3,).
rot (np.array): Rotation angle in degrees.
Returns:
np.array: Rotated axis-angle vector.
"""
# pose parameters
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1]])
# find the rotation of the hand in camera frame
per_rdg, _ = cv2.Rodrigues(aa)
# apply the global rotation to the global orientation
resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg))
aa = (resrot.T)[0]
return aa.astype(np.float32)
def mano_param_processing(mano_params: Dict, has_mano_params: Dict, rot: float, do_flip: bool) -> Tuple[Dict, Dict]:
"""
Apply random augmentations to the MANO parameters.
Args:
mano_params (Dict): MANO parameter annotations.
has_mano_params (Dict): Whether mano annotations are valid.
rot (float): Random rotation applied to the keypoints.
do_flip (bool): Whether to flip keypoints or not.
Returns:
Dict, Dict: Transformed MANO parameters and valid flags.
"""
if do_flip:
mano_params, has_mano_params = fliplr_params(mano_params, has_mano_params)
mano_params['global_orient'] = rot_aa(mano_params['global_orient'], rot)
return mano_params, has_mano_params
def get_example(img_path: str|np.ndarray, center_x: float, center_y: float,
width: float, height: float,
keypoints_2d: np.array, keypoints_3d: np.array,
mano_params: Dict, has_mano_params: Dict,
flip_kp_permutation: List[int],
patch_width: int, patch_height: int,
mean: np.array, std: np.array,
do_augment: bool, is_right: bool, augm_config: CfgNode,
is_bgr: bool = True,
use_skimage_antialias: bool = False,
border_mode: int = cv2.BORDER_CONSTANT,
return_trans: bool = False) -> Tuple:
"""
Get an example from the dataset and (possibly) apply random augmentations.
Args:
img_path (str): Image filename
center_x (float): Bounding box center x coordinate in the original image.
center_y (float): Bounding box center y coordinate in the original image.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array with shape (N,3) containing the 2D keypoints in the original image coordinates.
keypoints_3d (np.array): Array with shape (N,4) containing the 3D keypoints.
mano_params (Dict): MANO parameter annotations.
has_mano_params (Dict): Whether MANO annotations are valid.
flip_kp_permutation (List): Permutation to apply to the keypoints after flipping.
patch_width (float): Output box width.
patch_height (float): Output box height.
mean (np.array): Array of shape (3,) containing the mean for normalizing the input image.
std (np.array): Array of shape (3,) containing the std for normalizing the input image.
do_augment (bool): Whether to apply data augmentation or not.
aug_config (CfgNode): Config containing augmentation parameters.
Returns:
return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size
img_patch (np.array): Cropped image patch of shape (3, patch_height, patch_height)
keypoints_2d (np.array): Array with shape (N,3) containing the transformed 2D keypoints.
keypoints_3d (np.array): Array with shape (N,4) containing the transformed 3D keypoints.
mano_params (Dict): Transformed MANO parameters.
has_mano_params (Dict): Valid flag for transformed MANO parameters.
img_size (np.array): Image size of the original image.
"""
if isinstance(img_path, str):
# 1. load image
cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
if not isinstance(cvimg, np.ndarray):
raise IOError("Fail to read %s" % img_path)
elif isinstance(img_path, np.ndarray):
cvimg = img_path
else:
raise TypeError('img_path must be either a string or a numpy array')
img_height, img_width, img_channels = cvimg.shape
img_size = np.array([img_height, img_width])
# 2. get augmentation params
if do_augment:
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = do_augmentation(augm_config)
else:
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = 1.0, 0, False, False, 0, [1.0, 1.0, 1.0], 0., 0.
# if it's a left hand, we flip
if not is_right:
do_flip = True
if width < 1 or height < 1:
breakpoint()
if do_extreme_crop:
if extreme_crop_lvl == 0:
center_x1, center_y1, width1, height1 = extreme_cropping(center_x, center_y, width, height, keypoints_2d)
elif extreme_crop_lvl == 1:
center_x1, center_y1, width1, height1 = extreme_cropping_aggressive(center_x, center_y, width, height, keypoints_2d)
THRESH = 4
if width1 < THRESH or height1 < THRESH:
# print(f'{do_extreme_crop=}')
# print(f'width: {width}, height: {height}')
# print(f'width1: {width1}, height1: {height1}')
# print(f'center_x: {center_x}, center_y: {center_y}')
# print(f'center_x1: {center_x1}, center_y1: {center_y1}')
# print(f'keypoints_2d: {keypoints_2d}')
# print(f'\n\n', flush=True)
# breakpoint()
pass
# print(f'skip ==> width1: {width1}, height1: {height1}, width: {width}, height: {height}')
else:
center_x, center_y, width, height = center_x1, center_y1, width1, height1
center_x += width * tx
center_y += height * ty
# Process 3D keypoints
keypoints_3d = keypoint_3d_processing(keypoints_3d, flip_kp_permutation, rot, do_flip)
# 3. generate image patch
if use_skimage_antialias:
# Blur image to avoid aliasing artifacts
downsampling_factor = (patch_width / (width*scale))
if downsampling_factor > 1.1:
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True, truncate=3.0)
img_patch_cv, trans = generate_image_patch_cv2(cvimg,
center_x, center_y,
width, height,
patch_width, patch_height,
do_flip, scale, rot,
border_mode=border_mode)
# img_patch_cv, trans = generate_image_patch_skimage(cvimg,
# center_x, center_y,
# width, height,
# patch_width, patch_height,
# do_flip, scale, rot,
# border_mode=border_mode)
image = img_patch_cv.copy()
if is_bgr:
image = image[:, :, ::-1]
img_patch_cv = image.copy()
img_patch = convert_cvimg_to_tensor(image)
mano_params, has_mano_params = mano_param_processing(mano_params, has_mano_params, rot, do_flip)
# apply normalization
for n_c in range(min(img_channels, 3)):
img_patch[n_c, :, :] = np.clip(img_patch[n_c, :, :] * color_scale[n_c], 0, 255)
if mean is not None and std is not None:
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - mean[n_c]) / std[n_c]
if do_flip:
keypoints_2d = fliplr_keypoints(keypoints_2d, img_width, flip_kp_permutation)
for n_jt in range(len(keypoints_2d)):
keypoints_2d[n_jt, 0:2] = trans_point2d(keypoints_2d[n_jt, 0:2], trans)
keypoints_2d[:, :-1] = keypoints_2d[:, :-1] / patch_width - 0.5
if not return_trans:
return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size
else:
return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size, trans
def crop_to_hips(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
"""
Extreme cropping: Crop the box up to the hip locations.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
lower_body_keypoints = [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25+0, 25+1, 25+4, 25+5]
keypoints_2d[lower_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.1 * scale[0]
height = 1.1 * scale[1]
return center_x, center_y, width, height
def crop_to_shoulders(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box up to the shoulder locations.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16]]
keypoints_2d[lower_body_keypoints, :] = 0
center, scale = get_bbox(keypoints_2d)
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.2 * scale[0]
height = 1.2 * scale[1]
return center_x, center_y, width, height
def crop_to_head(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box and keep on only the head.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16]]
keypoints_2d[lower_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.3 * scale[0]
height = 1.3 * scale[1]
return center_x, center_y, width, height
def crop_torso_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box and keep on only the torso.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
nontorso_body_keypoints = [0, 3, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 4, 5, 6, 7, 10, 11, 13, 17, 18]]
keypoints_2d[nontorso_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.1 * scale[0]
height = 1.1 * scale[1]
return center_x, center_y, width, height
def crop_rightarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box and keep on only the right arm.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
nonrightarm_body_keypoints = [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
keypoints_2d[nonrightarm_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.1 * scale[0]
height = 1.1 * scale[1]
return center_x, center_y, width, height
def crop_leftarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box and keep on only the left arm.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
nonleftarm_body_keypoints = [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18]]
keypoints_2d[nonleftarm_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.1 * scale[0]
height = 1.1 * scale[1]
return center_x, center_y, width, height
def crop_legs_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box and keep on only the legs.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
nonlegs_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18] + [25 + i for i in [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]]
keypoints_2d[nonlegs_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.1 * scale[0]
height = 1.1 * scale[1]
return center_x, center_y, width, height
def crop_rightleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box and keep on only the right leg.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
nonrightleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [25 + i for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
keypoints_2d[nonrightleg_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.1 * scale[0]
height = 1.1 * scale[1]
return center_x, center_y, width, height
def crop_leftleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
"""
Extreme cropping: Crop the box and keep on only the left leg.
Args:
center_x (float): x coordinate of the bounding box center.
center_y (float): y coordinate of the bounding box center.
width (float): Bounding box width.
height (float): Bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
center_x (float): x coordinate of the new bounding box center.
center_y (float): y coordinate of the new bounding box center.
width (float): New bounding box width.
height (float): New bounding box height.
"""
keypoints_2d = keypoints_2d.copy()
nonleftleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24] + [25 + i for i in [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
keypoints_2d[nonleftleg_body_keypoints, :] = 0
if keypoints_2d[:, -1].sum() > 1:
center, scale = get_bbox(keypoints_2d)
center_x = center[0]
center_y = center[1]
width = 1.1 * scale[0]
height = 1.1 * scale[1]
return center_x, center_y, width, height
def full_body(keypoints_2d: np.array) -> bool:
"""
Check if all main body joints are visible.
Args:
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
bool: True if all main body joints are visible.
"""
body_keypoints_openpose = [2, 3, 4, 5, 6, 7, 10, 11, 13, 14]
body_keypoints = [25 + i for i in [8, 7, 6, 9, 10, 11, 1, 0, 4, 5]]
return (np.maximum(keypoints_2d[body_keypoints, -1], keypoints_2d[body_keypoints_openpose, -1]) > 0).sum() == len(body_keypoints)
def upper_body(keypoints_2d: np.array):
"""
Check if all upper body joints are visible.
Args:
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
Returns:
bool: True if all main body joints are visible.
"""
lower_body_keypoints_openpose = [10, 11, 13, 14]
lower_body_keypoints = [25 + i for i in [1, 0, 4, 5]]
upper_body_keypoints_openpose = [0, 1, 15, 16, 17, 18]
upper_body_keypoints = [25+8, 25+9, 25+12, 25+13, 25+17, 25+18]
return ((keypoints_2d[lower_body_keypoints + lower_body_keypoints_openpose, -1] > 0).sum() == 0)\
and ((keypoints_2d[upper_body_keypoints + upper_body_keypoints_openpose, -1] > 0).sum() >= 2)
def get_bbox(keypoints_2d: np.array, rescale: float = 1.2) -> Tuple:
"""
Get center and scale for bounding box from openpose detections.
Args:
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
Returns:
center (np.array): Array of shape (2,) containing the new bounding box center.
scale (float): New bounding box scale.
"""
valid = keypoints_2d[:,-1] > 0
valid_keypoints = keypoints_2d[valid][:,:-1]
center = 0.5 * (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))
bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0))
# adjust bounding box tightness
scale = bbox_size
scale *= rescale
return center, scale
def extreme_cropping(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
"""
Perform extreme cropping
Args:
center_x (float): x coordinate of bounding box center.
center_y (float): y coordinate of bounding box center.
width (float): bounding box width.
height (float): bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
Returns:
center_x (float): x coordinate of bounding box center.
center_y (float): y coordinate of bounding box center.
width (float): bounding box width.
height (float): bounding box height.
"""
p = torch.rand(1).item()
if full_body(keypoints_2d):
if p < 0.7:
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
elif p < 0.9:
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
else:
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
elif upper_body(keypoints_2d):
if p < 0.9:
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
else:
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
return center_x, center_y, max(width, height), max(width, height)
def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
"""
Perform aggressive extreme cropping
Args:
center_x (float): x coordinate of bounding box center.
center_y (float): y coordinate of bounding box center.
width (float): bounding box width.
height (float): bounding box height.
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
Returns:
center_x (float): x coordinate of bounding box center.
center_y (float): y coordinate of bounding box center.
width (float): bounding box width.
height (float): bounding box height.
"""
p = torch.rand(1).item()
if full_body(keypoints_2d):
if p < 0.2:
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
elif p < 0.3:
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
elif p < 0.4:
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
elif p < 0.5:
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.6:
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.7:
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.8:
center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.9:
center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d)
else:
center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d)
elif upper_body(keypoints_2d):
if p < 0.2:
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
elif p < 0.4:
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
elif p < 0.6:
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
elif p < 0.8:
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
else:
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
return center_x, center_y, max(width, height), max(width, height)
|