Spaces:
Build error
Build error
File size: 13,565 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# ------------------------------------------------------------------------------
# Adapted from https://github.com/princeton-vl/pose-ae-train/
# Original licence: Copyright (c) 2017, umich-vl, under BSD 3-Clause License.
# ------------------------------------------------------------------------------
import numpy as np
import torch
from munkres import Munkres
from mmpose.core.evaluation import post_dark_udp
def _py_max_match(scores):
"""Apply munkres algorithm to get the best match.
Args:
scores(np.ndarray): cost matrix.
Returns:
np.ndarray: best match.
"""
m = Munkres()
tmp = m.compute(scores)
tmp = np.array(tmp).astype(int)
return tmp
def _match_by_tag(inp, params):
"""Match joints by tags. Use Munkres algorithm to calculate the best match
for keypoints grouping.
Note:
number of keypoints: K
max number of people in an image: M (M=30 by default)
dim of tags: L
If use flip testing, L=2; else L=1.
Args:
inp(tuple):
tag_k (np.ndarray[KxMxL]): tag corresponding to the
top k values of feature map per keypoint.
loc_k (np.ndarray[KxMx2]): top k locations of the
feature maps for keypoint.
val_k (np.ndarray[KxM]): top k value of the
feature maps per keypoint.
params(Params): class Params().
Returns:
np.ndarray: result of pose groups.
"""
assert isinstance(params, _Params), 'params should be class _Params()'
tag_k, loc_k, val_k = inp
default_ = np.zeros((params.num_joints, 3 + tag_k.shape[2]),
dtype=np.float32)
joint_dict = {}
tag_dict = {}
for i in range(params.num_joints):
idx = params.joint_order[i]
tags = tag_k[idx]
joints = np.concatenate((loc_k[idx], val_k[idx, :, None], tags), 1)
mask = joints[:, 2] > params.detection_threshold
tags = tags[mask]
joints = joints[mask]
if joints.shape[0] == 0:
continue
if i == 0 or len(joint_dict) == 0:
for tag, joint in zip(tags, joints):
key = tag[0]
joint_dict.setdefault(key, np.copy(default_))[idx] = joint
tag_dict[key] = [tag]
else:
grouped_keys = list(joint_dict.keys())[:params.max_num_people]
grouped_tags = [np.mean(tag_dict[i], axis=0) for i in grouped_keys]
if (params.ignore_too_much
and len(grouped_keys) == params.max_num_people):
continue
diff = joints[:, None, 3:] - np.array(grouped_tags)[None, :, :]
diff_normed = np.linalg.norm(diff, ord=2, axis=2)
diff_saved = np.copy(diff_normed)
if params.use_detection_val:
diff_normed = np.round(diff_normed) * 100 - joints[:, 2:3]
num_added = diff.shape[0]
num_grouped = diff.shape[1]
if num_added > num_grouped:
diff_normed = np.concatenate(
(diff_normed,
np.zeros((num_added, num_added - num_grouped),
dtype=np.float32) + 1e10),
axis=1)
pairs = _py_max_match(diff_normed)
for row, col in pairs:
if (row < num_added and col < num_grouped
and diff_saved[row][col] < params.tag_threshold):
key = grouped_keys[col]
joint_dict[key][idx] = joints[row]
tag_dict[key].append(tags[row])
else:
key = tags[row][0]
joint_dict.setdefault(key, np.copy(default_))[idx] = \
joints[row]
tag_dict[key] = [tags[row]]
results = np.array([joint_dict[i] for i in joint_dict]).astype(np.float32)
return results
class _Params:
"""A class of parameter.
Args:
cfg(Config): config.
"""
def __init__(self, cfg):
self.num_joints = cfg['num_joints']
self.max_num_people = cfg['max_num_people']
self.detection_threshold = cfg['detection_threshold']
self.tag_threshold = cfg['tag_threshold']
self.use_detection_val = cfg['use_detection_val']
self.ignore_too_much = cfg['ignore_too_much']
if self.num_joints == 17:
self.joint_order = [
i - 1 for i in
[1, 2, 3, 4, 5, 6, 7, 12, 13, 8, 9, 10, 11, 14, 15, 16, 17]
]
else:
self.joint_order = list(np.arange(self.num_joints))
class HeatmapParser:
"""The heatmap parser for post processing."""
def __init__(self, cfg):
self.params = _Params(cfg)
self.tag_per_joint = cfg['tag_per_joint']
self.pool = torch.nn.MaxPool2d(cfg['nms_kernel'], 1,
cfg['nms_padding'])
self.use_udp = cfg.get('use_udp', False)
self.score_per_joint = cfg.get('score_per_joint', False)
def nms(self, heatmaps):
"""Non-Maximum Suppression for heatmaps.
Args:
heatmap(torch.Tensor): Heatmaps before nms.
Returns:
torch.Tensor: Heatmaps after nms.
"""
maxm = self.pool(heatmaps)
maxm = torch.eq(maxm, heatmaps).float()
heatmaps = heatmaps * maxm
return heatmaps
def match(self, tag_k, loc_k, val_k):
"""Group keypoints to human poses in a batch.
Args:
tag_k (np.ndarray[NxKxMxL]): tag corresponding to the
top k values of feature map per keypoint.
loc_k (np.ndarray[NxKxMx2]): top k locations of the
feature maps for keypoint.
val_k (np.ndarray[NxKxM]): top k value of the
feature maps per keypoint.
Returns:
list
"""
def _match(x):
return _match_by_tag(x, self.params)
return list(map(_match, zip(tag_k, loc_k, val_k)))
def top_k(self, heatmaps, tags):
"""Find top_k values in an image.
Note:
batch size: N
number of keypoints: K
heatmap height: H
heatmap width: W
max number of people: M
dim of tags: L
If use flip testing, L=2; else L=1.
Args:
heatmaps (torch.Tensor[NxKxHxW])
tags (torch.Tensor[NxKxHxWxL])
Returns:
dict: A dict containing top_k values.
- tag_k (np.ndarray[NxKxMxL]):
tag corresponding to the top k values of
feature map per keypoint.
- loc_k (np.ndarray[NxKxMx2]):
top k location of feature map per keypoint.
- val_k (np.ndarray[NxKxM]):
top k value of feature map per keypoint.
"""
heatmaps = self.nms(heatmaps)
N, K, H, W = heatmaps.size()
heatmaps = heatmaps.view(N, K, -1)
val_k, ind = heatmaps.topk(self.params.max_num_people, dim=2)
tags = tags.view(tags.size(0), tags.size(1), W * H, -1)
if not self.tag_per_joint:
tags = tags.expand(-1, self.params.num_joints, -1, -1)
tag_k = torch.stack(
[torch.gather(tags[..., i], 2, ind) for i in range(tags.size(3))],
dim=3)
x = ind % W
y = ind // W
ind_k = torch.stack((x, y), dim=3)
results = {
'tag_k': tag_k.cpu().numpy(),
'loc_k': ind_k.cpu().numpy(),
'val_k': val_k.cpu().numpy()
}
return results
@staticmethod
def adjust(results, heatmaps):
"""Adjust the coordinates for better accuracy.
Note:
batch size: N
number of keypoints: K
heatmap height: H
heatmap width: W
Args:
results (list(np.ndarray)): Keypoint predictions.
heatmaps (torch.Tensor[NxKxHxW]): Heatmaps.
"""
_, _, H, W = heatmaps.shape
for batch_id, people in enumerate(results):
for people_id, people_i in enumerate(people):
for joint_id, joint in enumerate(people_i):
if joint[2] > 0:
x, y = joint[0:2]
xx, yy = int(x), int(y)
tmp = heatmaps[batch_id][joint_id]
if tmp[min(H - 1, yy + 1), xx] > tmp[max(0, yy - 1),
xx]:
y += 0.25
else:
y -= 0.25
if tmp[yy, min(W - 1, xx + 1)] > tmp[yy,
max(0, xx - 1)]:
x += 0.25
else:
x -= 0.25
results[batch_id][people_id, joint_id,
0:2] = (x + 0.5, y + 0.5)
return results
@staticmethod
def refine(heatmap, tag, keypoints, use_udp=False):
"""Given initial keypoint predictions, we identify missing joints.
Note:
number of keypoints: K
heatmap height: H
heatmap width: W
dim of tags: L
If use flip testing, L=2; else L=1.
Args:
heatmap: np.ndarray(K, H, W).
tag: np.ndarray(K, H, W) | np.ndarray(K, H, W, L)
keypoints: np.ndarray of size (K, 3 + L)
last dim is (x, y, score, tag).
use_udp: bool-unbiased data processing
Returns:
np.ndarray: The refined keypoints.
"""
K, H, W = heatmap.shape
if len(tag.shape) == 3:
tag = tag[..., None]
tags = []
for i in range(K):
if keypoints[i, 2] > 0:
# save tag value of detected keypoint
x, y = keypoints[i][:2].astype(int)
x = np.clip(x, 0, W - 1)
y = np.clip(y, 0, H - 1)
tags.append(tag[i, y, x])
# mean tag of current detected people
prev_tag = np.mean(tags, axis=0)
results = []
for _heatmap, _tag in zip(heatmap, tag):
# distance of all tag values with mean tag of
# current detected people
distance_tag = (((_tag -
prev_tag[None, None, :])**2).sum(axis=2)**0.5)
norm_heatmap = _heatmap - np.round(distance_tag)
# find maximum position
y, x = np.unravel_index(np.argmax(norm_heatmap), _heatmap.shape)
xx = x.copy()
yy = y.copy()
# detection score at maximum position
val = _heatmap[y, x]
if not use_udp:
# offset by 0.5
x += 0.5
y += 0.5
# add a quarter offset
if _heatmap[yy, min(W - 1, xx + 1)] > _heatmap[yy, max(0, xx - 1)]:
x += 0.25
else:
x -= 0.25
if _heatmap[min(H - 1, yy + 1), xx] > _heatmap[max(0, yy - 1), xx]:
y += 0.25
else:
y -= 0.25
results.append((x, y, val))
results = np.array(results)
if results is not None:
for i in range(K):
# add keypoint if it is not detected
if results[i, 2] > 0 and keypoints[i, 2] == 0:
keypoints[i, :3] = results[i, :3]
return keypoints
def parse(self, heatmaps, tags, adjust=True, refine=True):
"""Group keypoints into poses given heatmap and tag.
Note:
batch size: N
number of keypoints: K
heatmap height: H
heatmap width: W
dim of tags: L
If use flip testing, L=2; else L=1.
Args:
heatmaps (torch.Tensor[NxKxHxW]): model output heatmaps.
tags (torch.Tensor[NxKxHxWxL]): model output tagmaps.
Returns:
tuple: A tuple containing keypoint grouping results.
- results (list(np.ndarray)): Pose results.
- scores (list/list(np.ndarray)): Score of people.
"""
results = self.match(**self.top_k(heatmaps, tags))
if adjust:
if self.use_udp:
for i in range(len(results)):
if results[i].shape[0] > 0:
results[i][..., :2] = post_dark_udp(
results[i][..., :2].copy(), heatmaps[i:i + 1, :])
else:
results = self.adjust(results, heatmaps)
if self.score_per_joint:
scores = [i[:, 2] for i in results[0]]
else:
scores = [i[:, 2].mean() for i in results[0]]
if refine:
results = results[0]
# for every detected person
for i in range(len(results)):
heatmap_numpy = heatmaps[0].cpu().numpy()
tag_numpy = tags[0].cpu().numpy()
if not self.tag_per_joint:
tag_numpy = np.tile(tag_numpy,
(self.params.num_joints, 1, 1, 1))
results[i] = self.refine(
heatmap_numpy, tag_numpy, results[i], use_udp=self.use_udp)
results = [results]
return results, scores
|