File size: 24,921 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import cv2
import numpy as np

from mmpose.core.post_processing import transform_preds


def _calc_distances(preds, targets, mask, normalize):
    """Calculate the normalized distances between preds and target.

    Note:
        batch_size: N
        num_keypoints: K
        dimension of keypoints: D (normally, D=2 or D=3)

    Args:
        preds (np.ndarray[N, K, D]): Predicted keypoint location.
        targets (np.ndarray[N, K, D]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        normalize (np.ndarray[N, D]): Typical value is heatmap_size

    Returns:
        np.ndarray[K, N]: The normalized distances. \
            If target keypoints are missing, the distance is -1.
    """
    N, K, _ = preds.shape
    # set mask=0 when normalize==0
    _mask = mask.copy()
    _mask[np.where((normalize == 0).sum(1))[0], :] = False
    distances = np.full((N, K), -1, dtype=np.float32)
    # handle invalid values
    normalize[np.where(normalize <= 0)] = 1e6
    distances[_mask] = np.linalg.norm(
        ((preds - targets) / normalize[:, None, :])[_mask], axis=-1)
    return distances.T


def _distance_acc(distances, thr=0.5):
    """Return the percentage below the distance threshold, while ignoring
    distances values with -1.

    Note:
        batch_size: N
    Args:
        distances (np.ndarray[N, ]): The normalized distances.
        thr (float): Threshold of the distances.

    Returns:
        float: Percentage of distances below the threshold. \
            If all target keypoints are missing, return -1.
    """
    distance_valid = distances != -1
    num_distance_valid = distance_valid.sum()
    if num_distance_valid > 0:
        return (distances[distance_valid] < thr).sum() / num_distance_valid
    return -1


def _get_max_preds(heatmaps):
    """Get keypoint predictions from score maps.

    Note:
        batch_size: N
        num_keypoints: K
        heatmap height: H
        heatmap width: W

    Args:
        heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps.

    Returns:
        tuple: A tuple containing aggregated results.

        - preds (np.ndarray[N, K, 2]): Predicted keypoint location.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    assert isinstance(heatmaps,
                      np.ndarray), ('heatmaps should be numpy.ndarray')
    assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

    N, K, _, W = heatmaps.shape
    heatmaps_reshaped = heatmaps.reshape((N, K, -1))
    idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1))
    maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1))

    preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
    preds[:, :, 0] = preds[:, :, 0] % W
    preds[:, :, 1] = preds[:, :, 1] // W

    preds = np.where(np.tile(maxvals, (1, 1, 2)) > 0.0, preds, -1)
    return preds, maxvals


def _get_max_preds_3d(heatmaps):
    """Get keypoint predictions from 3D score maps.

    Note:
        batch size: N
        num keypoints: K
        heatmap depth size: D
        heatmap height: H
        heatmap width: W

    Args:
        heatmaps (np.ndarray[N, K, D, H, W]): model predicted heatmaps.

    Returns:
        tuple: A tuple containing aggregated results.

        - preds (np.ndarray[N, K, 3]): Predicted keypoint location.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    assert isinstance(heatmaps, np.ndarray), \
        ('heatmaps should be numpy.ndarray')
    assert heatmaps.ndim == 5, 'heatmaps should be 5-ndim'

    N, K, D, H, W = heatmaps.shape
    heatmaps_reshaped = heatmaps.reshape((N, K, -1))
    idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1))
    maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1))

    preds = np.zeros((N, K, 3), dtype=np.float32)
    _idx = idx[..., 0]
    preds[..., 2] = _idx // (H * W)
    preds[..., 1] = (_idx // W) % H
    preds[..., 0] = _idx % W

    preds = np.where(maxvals > 0.0, preds, -1)
    return preds, maxvals


def pose_pck_accuracy(output, target, mask, thr=0.05, normalize=None):
    """Calculate the pose accuracy of PCK for each individual keypoint and the
    averaged accuracy across all keypoints from heatmaps.

    Note:
        PCK metric measures accuracy of the localization of the body joints.
        The distances between predicted positions and the ground-truth ones
        are typically normalized by the bounding box size.
        The threshold (thr) of the normalized distance is commonly set
        as 0.05, 0.1 or 0.2 etc.

        - batch_size: N
        - num_keypoints: K
        - heatmap height: H
        - heatmap width: W

    Args:
        output (np.ndarray[N, K, H, W]): Model output heatmaps.
        target (np.ndarray[N, K, H, W]): Groundtruth heatmaps.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        thr (float): Threshold of PCK calculation. Default 0.05.
        normalize (np.ndarray[N, 2]): Normalization factor for H&W.

    Returns:
        tuple: A tuple containing keypoint accuracy.

        - np.ndarray[K]: Accuracy of each keypoint.
        - float: Averaged accuracy across all keypoints.
        - int: Number of valid keypoints.
    """
    N, K, H, W = output.shape
    if K == 0:
        return None, 0, 0
    if normalize is None:
        normalize = np.tile(np.array([[H, W]]), (N, 1))

    pred, _ = _get_max_preds(output)
    gt, _ = _get_max_preds(target)
    return keypoint_pck_accuracy(pred, gt, mask, thr, normalize)


def keypoint_pck_accuracy(pred, gt, mask, thr, normalize):
    """Calculate the pose accuracy of PCK for each individual keypoint and the
    averaged accuracy across all keypoints for coordinates.

    Note:
        PCK metric measures accuracy of the localization of the body joints.
        The distances between predicted positions and the ground-truth ones
        are typically normalized by the bounding box size.
        The threshold (thr) of the normalized distance is commonly set
        as 0.05, 0.1 or 0.2 etc.

        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        thr (float): Threshold of PCK calculation.
        normalize (np.ndarray[N, 2]): Normalization factor for H&W.

    Returns:
        tuple: A tuple containing keypoint accuracy.

        - acc (np.ndarray[K]): Accuracy of each keypoint.
        - avg_acc (float): Averaged accuracy across all keypoints.
        - cnt (int): Number of valid keypoints.
    """
    distances = _calc_distances(pred, gt, mask, normalize)

    acc = np.array([_distance_acc(d, thr) for d in distances])
    valid_acc = acc[acc >= 0]
    cnt = len(valid_acc)
    avg_acc = valid_acc.mean() if cnt > 0 else 0
    return acc, avg_acc, cnt


def keypoint_auc(pred, gt, mask, normalize, num_step=20):
    """Calculate the pose accuracy of PCK for each individual keypoint and the
    averaged accuracy across all keypoints for coordinates.

    Note:
        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        normalize (float): Normalization factor.

    Returns:
        float: Area under curve.
    """
    nor = np.tile(np.array([[normalize, normalize]]), (pred.shape[0], 1))
    x = [1.0 * i / num_step for i in range(num_step)]
    y = []
    for thr in x:
        _, avg_acc, _ = keypoint_pck_accuracy(pred, gt, mask, thr, nor)
        y.append(avg_acc)

    auc = 0
    for i in range(num_step):
        auc += 1.0 / num_step * y[i]
    return auc


def keypoint_nme(pred, gt, mask, normalize_factor):
    """Calculate the normalized mean error (NME).

    Note:
        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.
        normalize_factor (np.ndarray[N, 2]): Normalization factor.

    Returns:
        float: normalized mean error
    """
    distances = _calc_distances(pred, gt, mask, normalize_factor)
    distance_valid = distances[distances != -1]
    return distance_valid.sum() / max(1, len(distance_valid))


def keypoint_epe(pred, gt, mask):
    """Calculate the end-point error.

    Note:
        - batch_size: N
        - num_keypoints: K

    Args:
        pred (np.ndarray[N, K, 2]): Predicted keypoint location.
        gt (np.ndarray[N, K, 2]): Groundtruth keypoint location.
        mask (np.ndarray[N, K]): Visibility of the target. False for invisible
            joints, and True for visible. Invisible joints will be ignored for
            accuracy calculation.

    Returns:
        float: Average end-point error.
    """

    distances = _calc_distances(
        pred, gt, mask,
        np.ones((pred.shape[0], pred.shape[2]), dtype=np.float32))
    distance_valid = distances[distances != -1]
    return distance_valid.sum() / max(1, len(distance_valid))


def _taylor(heatmap, coord):
    """Distribution aware coordinate decoding method.

    Note:
        - heatmap height: H
        - heatmap width: W

    Args:
        heatmap (np.ndarray[H, W]): Heatmap of a particular joint type.
        coord (np.ndarray[2,]): Coordinates of the predicted keypoints.

    Returns:
        np.ndarray[2,]: Updated coordinates.
    """
    H, W = heatmap.shape[:2]
    px, py = int(coord[0]), int(coord[1])
    if 1 < px < W - 2 and 1 < py < H - 2:
        dx = 0.5 * (heatmap[py][px + 1] - heatmap[py][px - 1])
        dy = 0.5 * (heatmap[py + 1][px] - heatmap[py - 1][px])
        dxx = 0.25 * (
            heatmap[py][px + 2] - 2 * heatmap[py][px] + heatmap[py][px - 2])
        dxy = 0.25 * (
            heatmap[py + 1][px + 1] - heatmap[py - 1][px + 1] -
            heatmap[py + 1][px - 1] + heatmap[py - 1][px - 1])
        dyy = 0.25 * (
            heatmap[py + 2 * 1][px] - 2 * heatmap[py][px] +
            heatmap[py - 2 * 1][px])
        derivative = np.array([[dx], [dy]])
        hessian = np.array([[dxx, dxy], [dxy, dyy]])
        if dxx * dyy - dxy**2 != 0:
            hessianinv = np.linalg.inv(hessian)
            offset = -hessianinv @ derivative
            offset = np.squeeze(np.array(offset.T), axis=0)
            coord += offset
    return coord


def post_dark_udp(coords, batch_heatmaps, kernel=3):
    """DARK post-pocessing. Implemented by udp. Paper ref: Huang et al. The
    Devil is in the Details: Delving into Unbiased Data Processing for Human
    Pose Estimation (CVPR 2020). Zhang et al. Distribution-Aware Coordinate
    Representation for Human Pose Estimation (CVPR 2020).

    Note:
        - batch size: B
        - num keypoints: K
        - num persons: N
        - height of heatmaps: H
        - width of heatmaps: W

        B=1 for bottom_up paradigm where all persons share the same heatmap.
        B=N for top_down paradigm where each person has its own heatmaps.

    Args:
        coords (np.ndarray[N, K, 2]): Initial coordinates of human pose.
        batch_heatmaps (np.ndarray[B, K, H, W]): batch_heatmaps
        kernel (int): Gaussian kernel size (K) for modulation.

    Returns:
        np.ndarray([N, K, 2]): Refined coordinates.
    """
    if not isinstance(batch_heatmaps, np.ndarray):
        batch_heatmaps = batch_heatmaps.cpu().numpy()
    B, K, H, W = batch_heatmaps.shape
    N = coords.shape[0]
    assert (B == 1 or B == N)
    for heatmaps in batch_heatmaps:
        for heatmap in heatmaps:
            cv2.GaussianBlur(heatmap, (kernel, kernel), 0, heatmap)
    np.clip(batch_heatmaps, 0.001, 50, batch_heatmaps)
    np.log(batch_heatmaps, batch_heatmaps)

    batch_heatmaps_pad = np.pad(
        batch_heatmaps, ((0, 0), (0, 0), (1, 1), (1, 1)),
        mode='edge').flatten()

    index = coords[..., 0] + 1 + (coords[..., 1] + 1) * (W + 2)
    index += (W + 2) * (H + 2) * np.arange(0, B * K).reshape(-1, K)
    index = index.astype(int).reshape(-1, 1)
    i_ = batch_heatmaps_pad[index]
    ix1 = batch_heatmaps_pad[index + 1]
    iy1 = batch_heatmaps_pad[index + W + 2]
    ix1y1 = batch_heatmaps_pad[index + W + 3]
    ix1_y1_ = batch_heatmaps_pad[index - W - 3]
    ix1_ = batch_heatmaps_pad[index - 1]
    iy1_ = batch_heatmaps_pad[index - 2 - W]

    dx = 0.5 * (ix1 - ix1_)
    dy = 0.5 * (iy1 - iy1_)
    derivative = np.concatenate([dx, dy], axis=1)
    derivative = derivative.reshape(N, K, 2, 1)
    dxx = ix1 - 2 * i_ + ix1_
    dyy = iy1 - 2 * i_ + iy1_
    dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_)
    hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1)
    hessian = hessian.reshape(N, K, 2, 2)
    hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2))
    coords -= np.einsum('ijmn,ijnk->ijmk', hessian, derivative).squeeze()
    return coords


def _gaussian_blur(heatmaps, kernel=11):
    """Modulate heatmap distribution with Gaussian.
     sigma = 0.3*((kernel_size-1)*0.5-1)+0.8
     sigma~=3 if k=17
     sigma=2 if k=11;
     sigma~=1.5 if k=7;
     sigma~=1 if k=3;

    Note:
        - batch_size: N
        - num_keypoints: K
        - heatmap height: H
        - heatmap width: W

    Args:
        heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps.
        kernel (int): Gaussian kernel size (K) for modulation, which should
            match the heatmap gaussian sigma when training.
            K=17 for sigma=3 and k=11 for sigma=2.

    Returns:
        np.ndarray ([N, K, H, W]): Modulated heatmap distribution.
    """
    assert kernel % 2 == 1

    border = (kernel - 1) // 2
    batch_size = heatmaps.shape[0]
    num_joints = heatmaps.shape[1]
    height = heatmaps.shape[2]
    width = heatmaps.shape[3]
    for i in range(batch_size):
        for j in range(num_joints):
            origin_max = np.max(heatmaps[i, j])
            dr = np.zeros((height + 2 * border, width + 2 * border),
                          dtype=np.float32)
            dr[border:-border, border:-border] = heatmaps[i, j].copy()
            dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
            heatmaps[i, j] = dr[border:-border, border:-border].copy()
            heatmaps[i, j] *= origin_max / np.max(heatmaps[i, j])
    return heatmaps


def keypoints_from_regression(regression_preds, center, scale, img_size):
    """Get final keypoint predictions from regression vectors and transform
    them back to the image.

    Note:
        - batch_size: N
        - num_keypoints: K

    Args:
        regression_preds (np.ndarray[N, K, 2]): model prediction.
        center (np.ndarray[N, 2]): Center of the bounding box (x, y).
        scale (np.ndarray[N, 2]): Scale of the bounding box
            wrt height/width.
        img_size (list(img_width, img_height)): model input image size.

    Returns:
        tuple:

        - preds (np.ndarray[N, K, 2]): Predicted keypoint location in images.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    N, K, _ = regression_preds.shape
    preds, maxvals = regression_preds, np.ones((N, K, 1), dtype=np.float32)

    preds = preds * img_size

    # Transform back to the image
    for i in range(N):
        preds[i] = transform_preds(preds[i], center[i], scale[i], img_size)

    return preds, maxvals


def keypoints_from_heatmaps(heatmaps,
                            center,
                            scale,
                            unbiased=False,
                            post_process='default',
                            kernel=11,
                            valid_radius_factor=0.0546875,
                            use_udp=False,
                            target_type='GaussianHeatmap'):
    """Get final keypoint predictions from heatmaps and transform them back to
    the image.

    Note:
        - batch size: N
        - num keypoints: K
        - heatmap height: H
        - heatmap width: W

    Args:
        heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps.
        center (np.ndarray[N, 2]): Center of the bounding box (x, y).
        scale (np.ndarray[N, 2]): Scale of the bounding box
            wrt height/width.
        post_process (str/None): Choice of methods to post-process
            heatmaps. Currently supported: None, 'default', 'unbiased',
            'megvii'.
        unbiased (bool): Option to use unbiased decoding. Mutually
            exclusive with megvii.
            Note: this arg is deprecated and unbiased=True can be replaced
            by post_process='unbiased'
            Paper ref: Zhang et al. Distribution-Aware Coordinate
            Representation for Human Pose Estimation (CVPR 2020).
        kernel (int): Gaussian kernel size (K) for modulation, which should
            match the heatmap gaussian sigma when training.
            K=17 for sigma=3 and k=11 for sigma=2.
        valid_radius_factor (float): The radius factor of the positive area
            in classification heatmap for UDP.
        use_udp (bool): Use unbiased data processing.
        target_type (str): 'GaussianHeatmap' or 'CombinedTarget'.
            GaussianHeatmap: Classification target with gaussian distribution.
            CombinedTarget: The combination of classification target
            (response map) and regression target (offset map).
            Paper ref: Huang et al. The Devil is in the Details: Delving into
            Unbiased Data Processing for Human Pose Estimation (CVPR 2020).

    Returns:
        tuple: A tuple containing keypoint predictions and scores.

        - preds (np.ndarray[N, K, 2]): Predicted keypoint location in images.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    # Avoid being affected
    heatmaps = heatmaps.copy()

    # detect conflicts
    if unbiased:
        assert post_process not in [False, None, 'megvii']
    if post_process in ['megvii', 'unbiased']:
        assert kernel > 0
    if use_udp:
        assert not post_process == 'megvii'

    # normalize configs
    if post_process is False:
        warnings.warn(
            'post_process=False is deprecated, '
            'please use post_process=None instead', DeprecationWarning)
        post_process = None
    elif post_process is True:
        if unbiased is True:
            warnings.warn(
                'post_process=True, unbiased=True is deprecated,'
                " please use post_process='unbiased' instead",
                DeprecationWarning)
            post_process = 'unbiased'
        else:
            warnings.warn(
                'post_process=True, unbiased=False is deprecated, '
                "please use post_process='default' instead",
                DeprecationWarning)
            post_process = 'default'
    elif post_process == 'default':
        if unbiased is True:
            warnings.warn(
                'unbiased=True is deprecated, please use '
                "post_process='unbiased' instead", DeprecationWarning)
            post_process = 'unbiased'

    # start processing
    if post_process == 'megvii':
        heatmaps = _gaussian_blur(heatmaps, kernel=kernel)

    N, K, H, W = heatmaps.shape
    if use_udp:
        if target_type.lower() == 'GaussianHeatMap'.lower():
            preds, maxvals = _get_max_preds(heatmaps)
            preds = post_dark_udp(preds, heatmaps, kernel=kernel)
        elif target_type.lower() == 'CombinedTarget'.lower():
            for person_heatmaps in heatmaps:
                for i, heatmap in enumerate(person_heatmaps):
                    kt = 2 * kernel + 1 if i % 3 == 0 else kernel
                    cv2.GaussianBlur(heatmap, (kt, kt), 0, heatmap)
            # valid radius is in direct proportion to the height of heatmap.
            valid_radius = valid_radius_factor * H
            offset_x = heatmaps[:, 1::3, :].flatten() * valid_radius
            offset_y = heatmaps[:, 2::3, :].flatten() * valid_radius
            heatmaps = heatmaps[:, ::3, :]
            preds, maxvals = _get_max_preds(heatmaps)
            index = preds[..., 0] + preds[..., 1] * W
            index += W * H * np.arange(0, N * K / 3)
            index = index.astype(int).reshape(N, K // 3, 1)
            preds += np.concatenate((offset_x[index], offset_y[index]), axis=2)
        else:
            raise ValueError('target_type should be either '
                             "'GaussianHeatmap' or 'CombinedTarget'")
    else:
        preds, maxvals = _get_max_preds(heatmaps)
        if post_process == 'unbiased':  # alleviate biased coordinate
            # apply Gaussian distribution modulation.
            heatmaps = np.log(
                np.maximum(_gaussian_blur(heatmaps, kernel), 1e-10))
            for n in range(N):
                for k in range(K):
                    preds[n][k] = _taylor(heatmaps[n][k], preds[n][k])
        elif post_process is not None:
            # add +/-0.25 shift to the predicted locations for higher acc.
            for n in range(N):
                for k in range(K):
                    heatmap = heatmaps[n][k]
                    px = int(preds[n][k][0])
                    py = int(preds[n][k][1])
                    if 1 < px < W - 1 and 1 < py < H - 1:
                        diff = np.array([
                            heatmap[py][px + 1] - heatmap[py][px - 1],
                            heatmap[py + 1][px] - heatmap[py - 1][px]
                        ])
                        preds[n][k] += np.sign(diff) * .25
                        if post_process == 'megvii':
                            preds[n][k] += 0.5

    # Transform back to the image
    for i in range(N):
        preds[i] = transform_preds(
            preds[i], center[i], scale[i], [W, H], use_udp=use_udp)

    if post_process == 'megvii':
        maxvals = maxvals / 255.0 + 0.5

    return preds, maxvals


def keypoints_from_heatmaps3d(heatmaps, center, scale):
    """Get final keypoint predictions from 3d heatmaps and transform them back
    to the image.

    Note:
        - batch size: N
        - num keypoints: K
        - heatmap depth size: D
        - heatmap height: H
        - heatmap width: W

    Args:
        heatmaps (np.ndarray[N, K, D, H, W]): model predicted heatmaps.
        center (np.ndarray[N, 2]): Center of the bounding box (x, y).
        scale (np.ndarray[N, 2]): Scale of the bounding box
            wrt height/width.

    Returns:
        tuple: A tuple containing keypoint predictions and scores.

        - preds (np.ndarray[N, K, 3]): Predicted 3d keypoint location \
            in images.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    N, K, D, H, W = heatmaps.shape
    preds, maxvals = _get_max_preds_3d(heatmaps)
    # Transform back to the image
    for i in range(N):
        preds[i, :, :2] = transform_preds(preds[i, :, :2], center[i], scale[i],
                                          [W, H])
    return preds, maxvals


def multilabel_classification_accuracy(pred, gt, mask, thr=0.5):
    """Get multi-label classification accuracy.

    Note:
        - batch size: N
        - label number: L

    Args:
        pred (np.ndarray[N, L, 2]): model predicted labels.
        gt (np.ndarray[N, L, 2]): ground-truth labels.
        mask (np.ndarray[N, 1] or np.ndarray[N, L] ): reliability of
        ground-truth labels.

    Returns:
        float: multi-label classification accuracy.
    """
    # we only compute accuracy on the samples with ground-truth of all labels.
    valid = (mask > 0).min(axis=1) if mask.ndim == 2 else (mask > 0)
    pred, gt = pred[valid], gt[valid]

    if pred.shape[0] == 0:
        acc = 0.0  # when no sample is with gt labels, set acc to 0.
    else:
        # The classification of a sample is regarded as correct
        # only if it's correct for all labels.
        acc = (((pred - thr) * (gt - thr)) > 0).all(axis=1).mean()
    return acc