Spaces:
Build error
Build error
File size: 30,650 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
import torch
from mmcv.parallel import collate, scatter
from mmpose.datasets.pipelines import Compose
from .inference import _box2cs, _xywh2xyxy, _xyxy2xywh
def extract_pose_sequence(pose_results, frame_idx, causal, seq_len, step=1):
"""Extract the target frame from 2D pose results, and pad the sequence to a
fixed length.
Args:
pose_results (list[list[dict]]): Multi-frame pose detection results
stored in a nested list. Each element of the outer list is the
pose detection results of a single frame, and each element of the
inner list is the pose information of one person, which contains:
- keypoints (ndarray[K, 2 or 3]): x, y, [score]
- track_id (int): unique id of each person, required \
when ``with_track_id==True``.
- bbox ((4, ) or (5, )): left, right, top, bottom, [score]
frame_idx (int): The index of the frame in the original video.
causal (bool): If True, the target frame is the last frame in
a sequence. Otherwise, the target frame is in the middle of
a sequence.
seq_len (int): The number of frames in the input sequence.
step (int): Step size to extract frames from the video.
Returns:
list[list[dict]]: Multi-frame pose detection results stored \
in a nested list with a length of seq_len.
"""
if causal:
frames_left = seq_len - 1
frames_right = 0
else:
frames_left = (seq_len - 1) // 2
frames_right = frames_left
num_frames = len(pose_results)
# get the padded sequence
pad_left = max(0, frames_left - frame_idx // step)
pad_right = max(0, frames_right - (num_frames - 1 - frame_idx) // step)
start = max(frame_idx % step, frame_idx - frames_left * step)
end = min(num_frames - (num_frames - 1 - frame_idx) % step,
frame_idx + frames_right * step + 1)
pose_results_seq = [pose_results[0]] * pad_left + \
pose_results[start:end:step] + [pose_results[-1]] * pad_right
return pose_results_seq
def _gather_pose_lifter_inputs(pose_results,
bbox_center,
bbox_scale,
norm_pose_2d=False):
"""Gather input data (keypoints and track_id) for pose lifter model.
Note:
- The temporal length of the pose detection results: T
- The number of the person instances: N
- The number of the keypoints: K
- The channel number of each keypoint: C
Args:
pose_results (List[List[Dict]]): Multi-frame pose detection results
stored in a nested list. Each element of the outer list is the
pose detection results of a single frame, and each element of the
inner list is the pose information of one person, which contains:
- keypoints (ndarray[K, 2 or 3]): x, y, [score]
- track_id (int): unique id of each person, required when
``with_track_id==True```
- bbox ((4, ) or (5, )): left, right, top, bottom, [score]
bbox_center (ndarray[1, 2]): x, y. The average center coordinate of the
bboxes in the dataset.
bbox_scale (int|float): The average scale of the bboxes in the dataset.
norm_pose_2d (bool): If True, scale the bbox (along with the 2D
pose) to bbox_scale, and move the bbox (along with the 2D pose) to
bbox_center. Default: False.
Returns:
list[list[dict]]: Multi-frame pose detection results
stored in a nested list. Each element of the outer list is the
pose detection results of a single frame, and each element of the
inner list is the pose information of one person, which contains:
- keypoints (ndarray[K, 2 or 3]): x, y, [score]
- track_id (int): unique id of each person, required when
``with_track_id==True``
"""
sequence_inputs = []
for frame in pose_results:
frame_inputs = []
for res in frame:
inputs = dict()
if norm_pose_2d:
bbox = res['bbox']
center = np.array([[(bbox[0] + bbox[2]) / 2,
(bbox[1] + bbox[3]) / 2]])
scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
inputs['keypoints'] = (res['keypoints'][:, :2] - center) \
/ scale * bbox_scale + bbox_center
else:
inputs['keypoints'] = res['keypoints'][:, :2]
if res['keypoints'].shape[1] == 3:
inputs['keypoints'] = np.concatenate(
[inputs['keypoints'], res['keypoints'][:, 2:]], axis=1)
if 'track_id' in res:
inputs['track_id'] = res['track_id']
frame_inputs.append(inputs)
sequence_inputs.append(frame_inputs)
return sequence_inputs
def _collate_pose_sequence(pose_results, with_track_id=True, target_frame=-1):
"""Reorganize multi-frame pose detection results into individual pose
sequences.
Note:
- The temporal length of the pose detection results: T
- The number of the person instances: N
- The number of the keypoints: K
- The channel number of each keypoint: C
Args:
pose_results (List[List[Dict]]): Multi-frame pose detection results
stored in a nested list. Each element of the outer list is the
pose detection results of a single frame, and each element of the
inner list is the pose information of one person, which contains:
- keypoints (ndarray[K, 2 or 3]): x, y, [score]
- track_id (int): unique id of each person, required when
``with_track_id==True```
with_track_id (bool): If True, the element in pose_results is expected
to contain "track_id", which will be used to gather the pose
sequence of a person from multiple frames. Otherwise, the pose
results in each frame are expected to have a consistent number and
order of identities. Default is True.
target_frame (int): The index of the target frame. Default: -1.
"""
T = len(pose_results)
assert T > 0
target_frame = (T + target_frame) % T # convert negative index to positive
N = len(pose_results[target_frame]) # use identities in the target frame
if N == 0:
return []
K, C = pose_results[target_frame][0]['keypoints'].shape
track_ids = None
if with_track_id:
track_ids = [res['track_id'] for res in pose_results[target_frame]]
pose_sequences = []
for idx in range(N):
pose_seq = dict()
# gather static information
for k, v in pose_results[target_frame][idx].items():
if k != 'keypoints':
pose_seq[k] = v
# gather keypoints
if not with_track_id:
pose_seq['keypoints'] = np.stack(
[frame[idx]['keypoints'] for frame in pose_results])
else:
keypoints = np.zeros((T, K, C), dtype=np.float32)
keypoints[target_frame] = pose_results[target_frame][idx][
'keypoints']
# find the left most frame containing track_ids[idx]
for frame_idx in range(target_frame - 1, -1, -1):
contains_idx = False
for res in pose_results[frame_idx]:
if res['track_id'] == track_ids[idx]:
keypoints[frame_idx] = res['keypoints']
contains_idx = True
break
if not contains_idx:
# replicate the left most frame
keypoints[:frame_idx + 1] = keypoints[frame_idx + 1]
break
# find the right most frame containing track_idx[idx]
for frame_idx in range(target_frame + 1, T):
contains_idx = False
for res in pose_results[frame_idx]:
if res['track_id'] == track_ids[idx]:
keypoints[frame_idx] = res['keypoints']
contains_idx = True
break
if not contains_idx:
# replicate the right most frame
keypoints[frame_idx + 1:] = keypoints[frame_idx]
break
pose_seq['keypoints'] = keypoints
pose_sequences.append(pose_seq)
return pose_sequences
def inference_pose_lifter_model(model,
pose_results_2d,
dataset=None,
dataset_info=None,
with_track_id=True,
image_size=None,
norm_pose_2d=False):
"""Inference 3D pose from 2D pose sequences using a pose lifter model.
Args:
model (nn.Module): The loaded pose lifter model
pose_results_2d (list[list[dict]]): The 2D pose sequences stored in a
nested list. Each element of the outer list is the 2D pose results
of a single frame, and each element of the inner list is the 2D
pose of one person, which contains:
- "keypoints" (ndarray[K, 2 or 3]): x, y, [score]
- "track_id" (int)
dataset (str): Dataset name, e.g. 'Body3DH36MDataset'
with_track_id: If True, the element in pose_results_2d is expected to
contain "track_id", which will be used to gather the pose sequence
of a person from multiple frames. Otherwise, the pose results in
each frame are expected to have a consistent number and order of
identities. Default is True.
image_size (tuple|list): image width, image height. If None, image size
will not be contained in dict ``data``.
norm_pose_2d (bool): If True, scale the bbox (along with the 2D
pose) to the average bbox scale of the dataset, and move the bbox
(along with the 2D pose) to the average bbox center of the dataset.
Returns:
list[dict]: 3D pose inference results. Each element is the result of \
an instance, which contains:
- "keypoints_3d" (ndarray[K, 3]): predicted 3D keypoints
- "keypoints" (ndarray[K, 2 or 3]): from the last frame in \
``pose_results_2d``.
- "track_id" (int): from the last frame in ``pose_results_2d``. \
If there is no valid instance, an empty list will be \
returned.
"""
cfg = model.cfg
test_pipeline = Compose(cfg.test_pipeline)
device = next(model.parameters()).device
if device.type == 'cpu':
device = -1
if dataset_info is not None:
flip_pairs = dataset_info.flip_pairs
assert 'stats_info' in dataset_info._dataset_info
bbox_center = dataset_info._dataset_info['stats_info']['bbox_center']
bbox_scale = dataset_info._dataset_info['stats_info']['bbox_scale']
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
# TODO: These will be removed in the later versions.
if dataset == 'Body3DH36MDataset':
flip_pairs = [[1, 4], [2, 5], [3, 6], [11, 14], [12, 15], [13, 16]]
bbox_center = np.array([[528, 427]], dtype=np.float32)
bbox_scale = 400
else:
raise NotImplementedError()
target_idx = -1 if model.causal else len(pose_results_2d) // 2
pose_lifter_inputs = _gather_pose_lifter_inputs(pose_results_2d,
bbox_center, bbox_scale,
norm_pose_2d)
pose_sequences_2d = _collate_pose_sequence(pose_lifter_inputs,
with_track_id, target_idx)
if not pose_sequences_2d:
return []
batch_data = []
for seq in pose_sequences_2d:
pose_2d = seq['keypoints'].astype(np.float32)
T, K, C = pose_2d.shape
input_2d = pose_2d[..., :2]
input_2d_visible = pose_2d[..., 2:3]
if C > 2:
input_2d_visible = pose_2d[..., 2:3]
else:
input_2d_visible = np.ones((T, K, 1), dtype=np.float32)
# TODO: Will be removed in the later versions
# Dummy 3D input
# This is for compatibility with configs in mmpose<=v0.14.0, where a
# 3D input is required to generate denormalization parameters. This
# part will be removed in the future.
target = np.zeros((K, 3), dtype=np.float32)
target_visible = np.ones((K, 1), dtype=np.float32)
# Dummy image path
# This is for compatibility with configs in mmpose<=v0.14.0, where
# target_image_path is required. This part will be removed in the
# future.
target_image_path = None
data = {
'input_2d': input_2d,
'input_2d_visible': input_2d_visible,
'target': target,
'target_visible': target_visible,
'target_image_path': target_image_path,
'ann_info': {
'num_joints': K,
'flip_pairs': flip_pairs
}
}
if image_size is not None:
assert len(image_size) == 2
data['image_width'] = image_size[0]
data['image_height'] = image_size[1]
data = test_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=len(batch_data))
batch_data = scatter(batch_data, target_gpus=[device])[0]
with torch.no_grad():
result = model(
input=batch_data['input'],
metas=batch_data['metas'],
return_loss=False)
poses_3d = result['preds']
if poses_3d.shape[-1] != 4:
assert poses_3d.shape[-1] == 3
dummy_score = np.ones(
poses_3d.shape[:-1] + (1, ), dtype=poses_3d.dtype)
poses_3d = np.concatenate((poses_3d, dummy_score), axis=-1)
pose_results = []
for pose_2d, pose_3d in zip(pose_sequences_2d, poses_3d):
pose_result = pose_2d.copy()
pose_result['keypoints_3d'] = pose_3d
pose_results.append(pose_result)
return pose_results
def vis_3d_pose_result(model,
result,
img=None,
dataset='Body3DH36MDataset',
dataset_info=None,
kpt_score_thr=0.3,
radius=8,
thickness=2,
num_instances=-1,
show=False,
out_file=None):
"""Visualize the 3D pose estimation results.
Args:
model (nn.Module): The loaded model.
result (list[dict])
"""
if dataset_info is not None:
skeleton = dataset_info.skeleton
pose_kpt_color = dataset_info.pose_kpt_color
pose_link_color = dataset_info.pose_link_color
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
# TODO: These will be removed in the later versions.
palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
[230, 230, 0], [255, 153, 255], [153, 204, 255],
[255, 102, 255], [255, 51, 255], [102, 178, 255],
[51, 153, 255], [255, 153, 153], [255, 102, 102],
[255, 51, 51], [153, 255, 153], [102, 255, 102],
[51, 255, 51], [0, 255, 0], [0, 0, 255],
[255, 0, 0], [255, 255, 255]])
if dataset == 'Body3DH36MDataset':
skeleton = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7],
[7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [12, 13],
[8, 14], [14, 15], [15, 16]]
pose_kpt_color = palette[[
9, 0, 0, 0, 16, 16, 16, 9, 9, 9, 9, 16, 16, 16, 0, 0, 0
]]
pose_link_color = palette[[
0, 0, 0, 16, 16, 16, 9, 9, 9, 9, 16, 16, 16, 0, 0, 0
]]
elif dataset == 'InterHand3DDataset':
skeleton = [[0, 1], [1, 2], [2, 3], [3, 20], [4, 5], [5, 6],
[6, 7], [7, 20], [8, 9], [9, 10], [10, 11], [11, 20],
[12, 13], [13, 14], [14, 15], [15, 20], [16, 17],
[17, 18], [18, 19], [19, 20], [21, 22], [22, 23],
[23, 24], [24, 41], [25, 26], [26, 27], [27, 28],
[28, 41], [29, 30], [30, 31], [31, 32], [32, 41],
[33, 34], [34, 35], [35, 36], [36, 41], [37, 38],
[38, 39], [39, 40], [40, 41]]
pose_kpt_color = [[14, 128, 250], [14, 128, 250], [14, 128, 250],
[14, 128, 250], [80, 127, 255], [80, 127, 255],
[80, 127, 255], [80, 127, 255], [71, 99, 255],
[71, 99, 255], [71, 99, 255], [71, 99, 255],
[0, 36, 255], [0, 36, 255], [0, 36, 255],
[0, 36, 255], [0, 0, 230], [0, 0, 230],
[0, 0, 230], [0, 0, 230], [0, 0, 139],
[237, 149, 100], [237, 149, 100],
[237, 149, 100], [237, 149, 100], [230, 128, 77],
[230, 128, 77], [230, 128, 77], [230, 128, 77],
[255, 144, 30], [255, 144, 30], [255, 144, 30],
[255, 144, 30], [153, 51, 0], [153, 51, 0],
[153, 51, 0], [153, 51, 0], [255, 51, 13],
[255, 51, 13], [255, 51, 13], [255, 51, 13],
[103, 37, 8]]
pose_link_color = [[14, 128, 250], [14, 128, 250], [14, 128, 250],
[14, 128, 250], [80, 127, 255], [80, 127, 255],
[80, 127, 255], [80, 127, 255], [71, 99, 255],
[71, 99, 255], [71, 99, 255], [71, 99, 255],
[0, 36, 255], [0, 36, 255], [0, 36, 255],
[0, 36, 255], [0, 0, 230], [0, 0, 230],
[0, 0, 230], [0, 0, 230], [237, 149, 100],
[237, 149, 100], [237, 149, 100],
[237, 149, 100], [230, 128, 77], [230, 128, 77],
[230, 128, 77], [230, 128, 77], [255, 144, 30],
[255, 144, 30], [255, 144, 30], [255, 144, 30],
[153, 51, 0], [153, 51, 0], [153, 51, 0],
[153, 51, 0], [255, 51, 13], [255, 51, 13],
[255, 51, 13], [255, 51, 13]]
else:
raise NotImplementedError
if hasattr(model, 'module'):
model = model.module
img = model.show_result(
result,
img,
skeleton,
radius=radius,
thickness=thickness,
pose_kpt_color=pose_kpt_color,
pose_link_color=pose_link_color,
num_instances=num_instances,
show=show,
out_file=out_file)
return img
def inference_interhand_3d_model(model,
img_or_path,
det_results,
bbox_thr=None,
format='xywh',
dataset='InterHand3DDataset'):
"""Inference a single image with a list of hand bounding boxes.
Note:
- num_bboxes: N
- num_keypoints: K
Args:
model (nn.Module): The loaded pose model.
img_or_path (str | np.ndarray): Image filename or loaded image.
det_results (list[dict]): The 2D bbox sequences stored in a list.
Each each element of the list is the bbox of one person, whose
shape is (ndarray[4 or 5]), containing 4 box coordinates
(and score).
dataset (str): Dataset name.
format: bbox format ('xyxy' | 'xywh'). Default: 'xywh'.
'xyxy' means (left, top, right, bottom),
'xywh' means (left, top, width, height).
Returns:
list[dict]: 3D pose inference results. Each element is the result \
of an instance, which contains the predicted 3D keypoints with \
shape (ndarray[K,3]). If there is no valid instance, an \
empty list will be returned.
"""
assert format in ['xyxy', 'xywh']
pose_results = []
if len(det_results) == 0:
return pose_results
# Change for-loop preprocess each bbox to preprocess all bboxes at once.
bboxes = np.array([box['bbox'] for box in det_results])
# Select bboxes by score threshold
if bbox_thr is not None:
assert bboxes.shape[1] == 5
valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
bboxes = bboxes[valid_idx]
det_results = [det_results[i] for i in valid_idx]
if format == 'xyxy':
bboxes_xyxy = bboxes
bboxes_xywh = _xyxy2xywh(bboxes)
else:
# format is already 'xywh'
bboxes_xywh = bboxes
bboxes_xyxy = _xywh2xyxy(bboxes)
# if bbox_thr remove all bounding box
if len(bboxes_xywh) == 0:
return []
cfg = model.cfg
device = next(model.parameters()).device
if device.type == 'cpu':
device = -1
# build the data pipeline
test_pipeline = Compose(cfg.test_pipeline)
assert len(bboxes[0]) in [4, 5]
if dataset == 'InterHand3DDataset':
flip_pairs = [[i, 21 + i] for i in range(21)]
else:
raise NotImplementedError()
batch_data = []
for bbox in bboxes:
center, scale = _box2cs(cfg, bbox)
# prepare data
data = {
'center':
center,
'scale':
scale,
'bbox_score':
bbox[4] if len(bbox) == 5 else 1,
'bbox_id':
0, # need to be assigned if batch_size > 1
'dataset':
dataset,
'joints_3d':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'joints_3d_visible':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'rotation':
0,
'ann_info': {
'image_size': np.array(cfg.data_cfg['image_size']),
'num_joints': cfg.data_cfg['num_joints'],
'flip_pairs': flip_pairs,
'heatmap3d_depth_bound': cfg.data_cfg['heatmap3d_depth_bound'],
'heatmap_size_root': cfg.data_cfg['heatmap_size_root'],
'root_depth_bound': cfg.data_cfg['root_depth_bound']
}
}
if isinstance(img_or_path, np.ndarray):
data['img'] = img_or_path
else:
data['image_file'] = img_or_path
data = test_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=len(batch_data))
batch_data = scatter(batch_data, [device])[0]
# forward the model
with torch.no_grad():
result = model(
img=batch_data['img'],
img_metas=batch_data['img_metas'],
return_loss=False)
poses_3d = result['preds']
rel_root_depth = result['rel_root_depth']
hand_type = result['hand_type']
if poses_3d.shape[-1] != 4:
assert poses_3d.shape[-1] == 3
dummy_score = np.ones(
poses_3d.shape[:-1] + (1, ), dtype=poses_3d.dtype)
poses_3d = np.concatenate((poses_3d, dummy_score), axis=-1)
# add relative root depth to left hand joints
poses_3d[:, 21:, 2] += rel_root_depth
# set joint scores according to hand type
poses_3d[:, :21, 3] *= hand_type[:, [0]]
poses_3d[:, 21:, 3] *= hand_type[:, [1]]
pose_results = []
for pose_3d, person_res, bbox_xyxy in zip(poses_3d, det_results,
bboxes_xyxy):
pose_res = person_res.copy()
pose_res['keypoints_3d'] = pose_3d
pose_res['bbox'] = bbox_xyxy
pose_results.append(pose_res)
return pose_results
def inference_mesh_model(model,
img_or_path,
det_results,
bbox_thr=None,
format='xywh',
dataset='MeshH36MDataset'):
"""Inference a single image with a list of bounding boxes.
Note:
- num_bboxes: N
- num_keypoints: K
- num_vertices: V
- num_faces: F
Args:
model (nn.Module): The loaded pose model.
img_or_path (str | np.ndarray): Image filename or loaded image.
det_results (list[dict]): The 2D bbox sequences stored in a list.
Each element of the list is the bbox of one person.
"bbox" (ndarray[4 or 5]): The person bounding box,
which contains 4 box coordinates (and score).
bbox_thr (float | None): Threshold for bounding boxes.
Only bboxes with higher scores will be fed into the pose
detector. If bbox_thr is None, all boxes will be used.
format (str): bbox format ('xyxy' | 'xywh'). Default: 'xywh'.
- 'xyxy' means (left, top, right, bottom),
- 'xywh' means (left, top, width, height).
dataset (str): Dataset name.
Returns:
list[dict]: 3D pose inference results. Each element \
is the result of an instance, which contains:
- 'bbox' (ndarray[4]): instance bounding bbox
- 'center' (ndarray[2]): bbox center
- 'scale' (ndarray[2]): bbox scale
- 'keypoints_3d' (ndarray[K,3]): predicted 3D keypoints
- 'camera' (ndarray[3]): camera parameters
- 'vertices' (ndarray[V, 3]): predicted 3D vertices
- 'faces' (ndarray[F, 3]): mesh faces
If there is no valid instance, an empty list
will be returned.
"""
assert format in ['xyxy', 'xywh']
pose_results = []
if len(det_results) == 0:
return pose_results
# Change for-loop preprocess each bbox to preprocess all bboxes at once.
bboxes = np.array([box['bbox'] for box in det_results])
# Select bboxes by score threshold
if bbox_thr is not None:
assert bboxes.shape[1] == 5
valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
bboxes = bboxes[valid_idx]
det_results = [det_results[i] for i in valid_idx]
if format == 'xyxy':
bboxes_xyxy = bboxes
bboxes_xywh = _xyxy2xywh(bboxes)
else:
# format is already 'xywh'
bboxes_xywh = bboxes
bboxes_xyxy = _xywh2xyxy(bboxes)
# if bbox_thr remove all bounding box
if len(bboxes_xywh) == 0:
return []
cfg = model.cfg
device = next(model.parameters()).device
if device.type == 'cpu':
device = -1
# build the data pipeline
test_pipeline = Compose(cfg.test_pipeline)
assert len(bboxes[0]) in [4, 5]
if dataset == 'MeshH36MDataset':
flip_pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9],
[20, 21], [22, 23]]
else:
raise NotImplementedError()
batch_data = []
for bbox in bboxes:
center, scale = _box2cs(cfg, bbox)
# prepare data
data = {
'image_file':
img_or_path,
'center':
center,
'scale':
scale,
'rotation':
0,
'bbox_score':
bbox[4] if len(bbox) == 5 else 1,
'dataset':
dataset,
'joints_2d':
np.zeros((cfg.data_cfg.num_joints, 2), dtype=np.float32),
'joints_2d_visible':
np.zeros((cfg.data_cfg.num_joints, 1), dtype=np.float32),
'joints_3d':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'joints_3d_visible':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'pose':
np.zeros(72, dtype=np.float32),
'beta':
np.zeros(10, dtype=np.float32),
'has_smpl':
0,
'ann_info': {
'image_size': np.array(cfg.data_cfg['image_size']),
'num_joints': cfg.data_cfg['num_joints'],
'flip_pairs': flip_pairs,
}
}
data = test_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=len(batch_data))
batch_data = scatter(batch_data, target_gpus=[device])[0]
# forward the model
with torch.no_grad():
preds = model(
img=batch_data['img'],
img_metas=batch_data['img_metas'],
return_loss=False,
return_vertices=True,
return_faces=True)
for idx in range(len(det_results)):
pose_res = det_results[idx].copy()
pose_res['bbox'] = bboxes_xyxy[idx]
pose_res['center'] = batch_data['img_metas'][idx]['center']
pose_res['scale'] = batch_data['img_metas'][idx]['scale']
pose_res['keypoints_3d'] = preds['keypoints_3d'][idx]
pose_res['camera'] = preds['camera'][idx]
pose_res['vertices'] = preds['vertices'][idx]
pose_res['faces'] = preds['faces']
pose_results.append(pose_res)
return pose_results
def vis_3d_mesh_result(model, result, img=None, show=False, out_file=None):
"""Visualize the 3D mesh estimation results.
Args:
model (nn.Module): The loaded model.
result (list[dict]): 3D mesh estimation results.
"""
if hasattr(model, 'module'):
model = model.module
img = model.show_result(result, img, show=show, out_file=out_file)
return img
|