anonymise_this / app.py
arogeriogel's picture
update app
7cc98e5 unverified
raw
history blame
10.7 kB
import spacy
import streamlit as st
import re
import logging
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, RecognizerResult, EntityRecognizer
from annotated_text import annotated_text
from flair_recognizer import FlairRecognizer
from detoxify import Detoxify
###############################
#### Render Streamlit page ####
###############################
st.title("Anonymise your text!")
st.markdown(
"This mini-app anonymises text using Flair and Presidio. You can find the code in the Files and versions tab above. The development of this app was inspired by previous work, namely this [pii-anonimyzer](https://huggingface.co/spaces/beki/pii-anonymizer)"
)
# Configure logger
logging.basicConfig(format="\n%(asctime)s\n%(message)s", level=logging.INFO, force=True)
##############################
###### Define functions ######
##############################
@st.cache(allow_output_mutation=True,show_spinner=False)
def analyzer_engine():
"""Return AnalyzerEngine."""
analyzer = AnalyzerEngine()
flair_recognizer = FlairRecognizer()
analyzer.registry.add_recognizer(flair_recognizer)
return analyzer
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
# if st.session_state.excluded_words:
# deny_list = [i.strip() for i in st.session_state.excluded_words.split(',')]
# logging.info(
# f"words excluded : {deny_list}\n"
# )
# excluded_words_recognizer = PatternRecognizer(supported_entity="MANUAL ADD",
# name="Excluded words recognizer",
# deny_list=deny_list)
# analyzer_engine().registry.add_recognizer(excluded_words_recognizer)
results = analyzer_engine().analyze(**kwargs)
st.session_state.analyze_results = results
def annotate():
text = st.session_state.text
analyze_results = st.session_state.analyze_results
tokens = []
starts=[]
# sort by start index
results = sorted(analyze_results, key=lambda x: x.start)
for i, res in enumerate(results):
# if we already have an entity for this token don't add another
if res.start not in starts:
if i == 0:
tokens.append(text[:res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end:results[i+1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
# append this token to the list so we don't repeat results per token
starts.append(res.start)
return tokens
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine().get_supported_entities()
def analyze_text():
if not st.session_state.text:
st.session_state.text_error = "Please enter your text"
return
toxicity_results = Detoxify('original').predict(st.session_state.text)
is_toxic=False
for k in toxicity_results.keys():
for k in toxicity_results.keys():
if k!='toxicity':
if toxicity_results[k]>0.5:
is_toxic=True
else:
if toxicity_results[k]>0.65:
is_toxic=True
if is_toxic:
st.session_state.text_error = "Your text entry was detected as toxic, please re-write it."
return
else:
with text_spinner_placeholder:
with st.spinner("Please wait while your text is being analysed..."):
logging.info(f"This is the text being analysed: {st.session_state.text}")
st.session_state.text_error = ""
st.session_state.n_requests += 1
analyze(
text=st.session_state.text,
entities=st_entities,
language="en",
return_decision_process=False,
)
if st.session_state.excluded_words:
include_manual_input()
if st.session_state.allowed_words:
exclude_manual_input()
logging.info(
f"analyse results: {st.session_state.analyze_results}\n"
)
def include_manual_input():
deny_list = [i.strip() for i in st.session_state.excluded_words.split(',')]
def _deny_list_to_regex(deny_list):
"""
Convert a list of words to a matching regex.
To be analyzed by the analyze method as any other regex patterns.
:param deny_list: the list of words to detect
:return:the regex of the words for detection
"""
# Escape deny list elements as preparation for regex
escaped_deny_list = [re.escape(element) for element in deny_list]
regex = r"(?:^|(?<=\W))(" + "|".join(escaped_deny_list) + r")(?:(?=\W)|$)"
return regex
deny_list_pattern = _deny_list_to_regex(deny_list)
matches = re.finditer(deny_list_pattern, st.session_state.text)
results = []
for match in matches:
start, end = match.span()
current_match = st.session_state.text[start:end]
# Skip empty results
if current_match == "":
continue
pattern_result = RecognizerResult(
entity_type='MANUALLY ADDED',
start=start,
end=end,
score=1.0,
)
results.append(pattern_result)
results = EntityRecognizer.remove_duplicates(results)
st.session_state.analyze_results.extend(results)
logging.info(
f"analyse results after adding excluded words: {st.session_state.analyze_results}\n"
)
def exclude_manual_input():
analyze_results_fltered=[]
for token in st.session_state.analyze_results:
if st.session_state.text[token.start:token.end] not in st.session_state.allowed_words:
analyze_results_fltered.append(token)
logging.info(
f"analyse results after removing allowed words: {analyze_results_fltered}\n"
)
st.session_state.analyze_results = analyze_results_fltered
@st.cache(allow_output_mutation=True)
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
def anonymise_text():
if st.session_state.n_requests >= 50:
st.session_state.text_error = "Too many requests. Please wait a few seconds before anonymising more text."
logging.info(f"Session request limit reached: {st.session_state.n_requests}")
st.session_state.n_requests = 1
st.session_state.text_error = ""
if not st.session_state.text:
st.session_state.text_error = "Please enter your text"
return
if not st.session_state.analyze_results:
analyze_text()
with text_spinner_placeholder:
with st.spinner("Please wait while your text is being anonymised..."):
anon_results = anonymizer_engine().anonymize(st.session_state.text, st.session_state.analyze_results)
st.session_state.text_error = ""
st.session_state.n_requests += 1
st.session_state.anon_results = anon_results
logging.info(
f"text anonymised: {st.session_state.anon_results}"
)
def clear_results():
st.session_state.anon_results=""
st.session_state.analyze_results=""
# analyzer_engine().registry.remove_recognizer("Excluded words recognizer")
#######################################
#### Initialize "global" variables ####
#######################################
if "text_error" not in st.session_state:
st.session_state.text_error = ""
if "analyze_results" not in st.session_state:
st.session_state.analyze_results = ""
if "anon_results" not in st.session_state:
st.session_state.anon_results = ""
if "n_requests" not in st.session_state:
st.session_state.n_requests = 0
##############################
####### Page arguments #######
##############################
# Every widget with a key is automatically added to Session State as a global variable.
# In Streamlit, interacting with a widget triggers a rerun and variables defined
# in the code get reinitialized after each rerun.
# If a callback function is associated with a widget then a change in the widget
# triggers the following sequence: First the callback function is executed and then
# the app executes from top to bottom.
st.text_input(
label="Text",
placeholder="Write your text here",
key='text',
on_change=clear_results
)
st.text_input(
label="Data to be redacted (optional)",
placeholder="John, Mary, London",
key='excluded_words',
on_change=clear_results
)
st.text_input(
label="Data to be ignored (optional)",
placeholder="NHS, GEL, Lab",
key='allowed_words',
on_change=clear_results
)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
)
##############################
######## Page buttons ########
##############################
# button return true when clicked
col1, col2 = st.columns(2)
analyze_now=False
with col1:
analyze_now = st.button(
label="Analyse text",
type="primary",
on_click=analyze_text,
)
anonymise_now=False
with col2:
anonymise_now = st.button(
label="Anonymise text",
type="primary",
on_click=anonymise_text,
)
##############################
######## Page actions ########
##############################
text_spinner_placeholder = st.empty()
if st.session_state.text_error:
st.error(st.session_state.text_error)
with col1:
if st.session_state.analyze_results:
annotated_tokens=annotate()
annotated_text(*annotated_tokens)
st.write(st.session_state.analyze_results)
if not st.session_state.analyze_results and analyze_now:
st.write("No PII was found.")
with col2:
if st.session_state.anon_results:
st.write(st.session_state.anon_results.text)
if not st.session_state.analyze_results and anonymise_now:
st.write("No PII was found.")