File size: 18,685 Bytes
d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import getpass
import json
import os
import os.path as osp
import random
import numpy as np
import torch
import torch.distributed as dist
from PIL import Image
from termcolor import colored
from torch.utils.data import Dataset
from diffusion.data.builder import DATASETS, get_data_path
from diffusion.data.wids import ShardListDataset, ShardListDatasetMulti, lru_json_load
from diffusion.utils.logger import get_root_logger
@DATASETS.register_module()
class SanaImgDataset(torch.utils.data.Dataset):
def __init__(
self,
data_dir="",
transform=None,
resolution=256,
load_vae_feat=False,
load_text_feat=False,
max_length=300,
config=None,
caption_proportion=None,
external_caption_suffixes=None,
external_clipscore_suffixes=None,
clip_thr=0.0,
clip_thr_temperature=1.0,
img_extension=".png",
**kwargs,
):
if external_caption_suffixes is None:
external_caption_suffixes = []
if external_clipscore_suffixes is None:
external_clipscore_suffixes = []
self.logger = (
get_root_logger() if config is None else get_root_logger(osp.join(config.work_dir, "train_log.log"))
)
self.transform = transform if not load_vae_feat else None
self.load_vae_feat = load_vae_feat
self.load_text_feat = load_text_feat
self.resolution = resolution
self.max_length = max_length
self.caption_proportion = caption_proportion if caption_proportion is not None else {"prompt": 1.0}
self.external_caption_suffixes = external_caption_suffixes
self.external_clipscore_suffixes = external_clipscore_suffixes
self.clip_thr = clip_thr
self.clip_thr_temperature = clip_thr_temperature
self.default_prompt = "prompt"
self.img_extension = img_extension
self.data_dirs = data_dir if isinstance(data_dir, list) else [data_dir]
# self.meta_datas = [osp.join(data_dir, "meta_data.json") for data_dir in self.data_dirs]
self.dataset = []
for data_dir in self.data_dirs:
meta_data = json.load(open(osp.join(data_dir, "meta_data.json")))
self.dataset.extend([osp.join(data_dir, i) for i in meta_data["img_names"]])
self.dataset = self.dataset * 2000
self.logger.info(colored("Dataset is repeat 2000 times for toy dataset", "red", attrs=["bold"]))
self.ori_imgs_nums = len(self)
self.logger.info(f"Dataset samples: {len(self.dataset)}")
self.logger.info(f"Loading external caption json from: original_filename{external_caption_suffixes}.json")
self.logger.info(f"Loading external clipscore json from: original_filename{external_clipscore_suffixes}.json")
self.logger.info(f"external caption clipscore threshold: {clip_thr}, temperature: {clip_thr_temperature}")
self.logger.info(f"T5 max token length: {self.max_length}")
def getdata(self, idx):
data = self.dataset[idx]
self.key = data.split("/")[-1]
# info = json.load(open(f"{data}.json"))[self.key]
info = {}
with open(f"{data}.txt") as f:
info[self.default_prompt] = f.readlines()[0].strip()
# external json file
for suffix in self.external_caption_suffixes:
caption_json_path = f"{data}{suffix}.json"
if os.path.exists(caption_json_path):
try:
caption_json = lru_json_load(caption_json_path)
except:
caption_json = {}
if self.key in caption_json:
info.update(caption_json[self.key])
caption_type, caption_clipscore = self.weighted_sample_clipscore(data, info)
caption_type = caption_type if caption_type in info else self.default_prompt
txt_fea = "" if info[caption_type] is None else info[caption_type]
data_info = {
"img_hw": torch.tensor([self.resolution, self.resolution], dtype=torch.float32),
"aspect_ratio": torch.tensor(1.0),
}
if self.load_vae_feat:
assert ValueError("Load VAE is not supported now")
else:
img = f"{data}{self.img_extension}"
img = Image.open(img)
if self.transform:
img = self.transform(img)
attention_mask = torch.ones(1, 1, self.max_length, dtype=torch.int16) # 1x1xT
if self.load_text_feat:
npz_path = f"{self.key}.npz"
txt_info = np.load(npz_path)
txt_fea = torch.from_numpy(txt_info["caption_feature"]) # 1xTx4096
if "attention_mask" in txt_info:
attention_mask = torch.from_numpy(txt_info["attention_mask"])[None]
# make sure the feature length are the same
if txt_fea.shape[1] != self.max_length:
txt_fea = torch.cat([txt_fea, txt_fea[:, -1:].repeat(1, self.max_length - txt_fea.shape[1], 1)], dim=1)
attention_mask = torch.cat(
[attention_mask, torch.zeros(1, 1, self.max_length - attention_mask.shape[-1])], dim=-1
)
return (
img,
txt_fea,
attention_mask.to(torch.int16),
data_info,
idx,
caption_type,
"",
str(caption_clipscore),
)
def __getitem__(self, idx):
for _ in range(10):
try:
data = self.getdata(idx)
return data
except Exception as e:
print(f"Error details: {str(e)}")
idx = idx + 1
raise RuntimeError("Too many bad data.")
def __len__(self):
return len(self.dataset)
def weighted_sample_fix_prob(self):
labels = list(self.caption_proportion.keys())
weights = list(self.caption_proportion.values())
sampled_label = random.choices(labels, weights=weights, k=1)[0]
return sampled_label
def weighted_sample_clipscore(self, data, info):
labels = []
weights = []
fallback_label = None
max_clip_score = float("-inf")
for suffix in self.external_clipscore_suffixes:
clipscore_json_path = f"{data}{suffix}.json"
if os.path.exists(clipscore_json_path):
try:
clipscore_json = lru_json_load(clipscore_json_path)
except:
clipscore_json = {}
if self.key in clipscore_json:
clip_scores = clipscore_json[self.key]
for caption_type, clip_score in clip_scores.items():
clip_score = float(clip_score)
if caption_type in info:
if clip_score >= self.clip_thr:
labels.append(caption_type)
weights.append(clip_score)
if clip_score > max_clip_score:
max_clip_score = clip_score
fallback_label = caption_type
if not labels and fallback_label:
return fallback_label, max_clip_score
if not labels:
return self.default_prompt, 0.0
adjusted_weights = np.array(weights) ** (1.0 / max(self.clip_thr_temperature, 0.01))
normalized_weights = adjusted_weights / np.sum(adjusted_weights)
sampled_label = random.choices(labels, weights=normalized_weights, k=1)[0]
# sampled_label = random.choices(labels, weights=[1]*len(weights), k=1)[0]
index = labels.index(sampled_label)
original_weight = weights[index]
return sampled_label, original_weight
@DATASETS.register_module()
class SanaWebDataset(torch.utils.data.Dataset):
def __init__(
self,
data_dir="",
meta_path=None,
cache_dir="/cache/data/sana-webds-meta",
max_shards_to_load=None,
transform=None,
resolution=256,
load_vae_feat=False,
load_text_feat=False,
max_length=300,
config=None,
caption_proportion=None,
sort_dataset=False,
num_replicas=None,
external_caption_suffixes=None,
external_clipscore_suffixes=None,
clip_thr=0.0,
clip_thr_temperature=1.0,
**kwargs,
):
if external_caption_suffixes is None:
external_caption_suffixes = []
if external_clipscore_suffixes is None:
external_clipscore_suffixes = []
self.logger = (
get_root_logger() if config is None else get_root_logger(osp.join(config.work_dir, "train_log.log"))
)
self.transform = transform if not load_vae_feat else None
self.load_vae_feat = load_vae_feat
self.load_text_feat = load_text_feat
self.resolution = resolution
self.max_length = max_length
self.caption_proportion = caption_proportion if caption_proportion is not None else {"prompt": 1.0}
self.external_caption_suffixes = external_caption_suffixes
self.external_clipscore_suffixes = external_clipscore_suffixes
self.clip_thr = clip_thr
self.clip_thr_temperature = clip_thr_temperature
self.default_prompt = "prompt"
data_dirs = data_dir if isinstance(data_dir, list) else [data_dir]
meta_paths = meta_path if isinstance(meta_path, list) else [meta_path] * len(data_dirs)
self.meta_paths = []
for data_path, meta_path in zip(data_dirs, meta_paths):
self.data_path = osp.expanduser(data_path)
self.meta_path = osp.expanduser(meta_path) if meta_path is not None else None
_local_meta_path = osp.join(self.data_path, "wids-meta.json")
if meta_path is None and osp.exists(_local_meta_path):
self.logger.info(f"loading from {_local_meta_path}")
self.meta_path = meta_path = _local_meta_path
if meta_path is None:
self.meta_path = osp.join(
osp.expanduser(cache_dir),
self.data_path.replace("/", "--") + f".max_shards:{max_shards_to_load}" + ".wdsmeta.json",
)
assert osp.exists(self.meta_path), f"meta path not found in [{self.meta_path}] or [{_local_meta_path}]"
self.logger.info(f"[SimplyInternal] Loading meta information {self.meta_path}")
self.meta_paths.append(self.meta_path)
self._initialize_dataset(num_replicas, sort_dataset)
self.logger.info(f"Loading external caption json from: original_filename{external_caption_suffixes}.json")
self.logger.info(f"Loading external clipscore json from: original_filename{external_clipscore_suffixes}.json")
self.logger.info(f"external caption clipscore threshold: {clip_thr}, temperature: {clip_thr_temperature}")
self.logger.info(f"T5 max token length: {self.max_length}")
self.logger.warning(f"Sort the dataset: {sort_dataset}")
def _initialize_dataset(self, num_replicas, sort_dataset):
# uuid = abs(hash(self.meta_path)) % (10 ** 8)
import hashlib
uuid = hashlib.sha256(self.meta_path.encode()).hexdigest()[:8]
if len(self.meta_paths) > 0:
self.dataset = ShardListDatasetMulti(
self.meta_paths,
cache_dir=osp.expanduser(f"~/.cache/_wids_cache/{getpass.getuser()}-{uuid}"),
sort_data_inseq=sort_dataset,
num_replicas=num_replicas or dist.get_world_size(),
)
else:
# TODO: tmp to ensure there is no bug
self.dataset = ShardListDataset(
self.meta_path,
cache_dir=osp.expanduser(f"~/.cache/_wids_cache/{getpass.getuser()}-{uuid}"),
)
self.ori_imgs_nums = len(self)
self.logger.info(f"{self.dataset.data_info}")
def getdata(self, idx):
data = self.dataset[idx]
info = data[".json"]
self.key = data["__key__"]
dataindex_info = {
"index": data["__index__"],
"shard": "/".join(data["__shard__"].rsplit("/", 2)[-2:]),
"shardindex": data["__shardindex__"],
}
# external json file
for suffix in self.external_caption_suffixes:
caption_json_path = data["__shard__"].replace(".tar", f"{suffix}.json")
if os.path.exists(caption_json_path):
try:
caption_json = lru_json_load(caption_json_path)
except:
caption_json = {}
if self.key in caption_json:
info.update(caption_json[self.key])
caption_type, caption_clipscore = self.weighted_sample_clipscore(data, info)
caption_type = caption_type if caption_type in info else self.default_prompt
txt_fea = "" if info[caption_type] is None else info[caption_type]
data_info = {
"img_hw": torch.tensor([self.resolution, self.resolution], dtype=torch.float32),
"aspect_ratio": torch.tensor(1.0),
}
if self.load_vae_feat:
img = data[".npy"]
else:
img = data[".png"] if ".png" in data else data[".jpg"]
if self.transform:
img = self.transform(img)
attention_mask = torch.ones(1, 1, self.max_length, dtype=torch.int16) # 1x1xT
if self.load_text_feat:
npz_path = f"{self.key}.npz"
txt_info = np.load(npz_path)
txt_fea = torch.from_numpy(txt_info["caption_feature"]) # 1xTx4096
if "attention_mask" in txt_info:
attention_mask = torch.from_numpy(txt_info["attention_mask"])[None]
# make sure the feature length are the same
if txt_fea.shape[1] != self.max_length:
txt_fea = torch.cat([txt_fea, txt_fea[:, -1:].repeat(1, self.max_length - txt_fea.shape[1], 1)], dim=1)
attention_mask = torch.cat(
[attention_mask, torch.zeros(1, 1, self.max_length - attention_mask.shape[-1])], dim=-1
)
return (
img,
txt_fea,
attention_mask.to(torch.int16),
data_info,
idx,
caption_type,
dataindex_info,
str(caption_clipscore),
)
def __getitem__(self, idx):
for _ in range(10):
try:
data = self.getdata(idx)
return data
except Exception as e:
print(f"Error details: {str(e)}")
idx = idx + 1
raise RuntimeError("Too many bad data.")
def __len__(self):
return len(self.dataset)
def weighted_sample_fix_prob(self):
labels = list(self.caption_proportion.keys())
weights = list(self.caption_proportion.values())
sampled_label = random.choices(labels, weights=weights, k=1)[0]
return sampled_label
def weighted_sample_clipscore(self, data, info):
labels = []
weights = []
fallback_label = None
max_clip_score = float("-inf")
for suffix in self.external_clipscore_suffixes:
clipscore_json_path = data["__shard__"].replace(".tar", f"{suffix}.json")
if os.path.exists(clipscore_json_path):
try:
clipscore_json = lru_json_load(clipscore_json_path)
except:
clipscore_json = {}
if self.key in clipscore_json:
clip_scores = clipscore_json[self.key]
for caption_type, clip_score in clip_scores.items():
clip_score = float(clip_score)
if caption_type in info:
if clip_score >= self.clip_thr:
labels.append(caption_type)
weights.append(clip_score)
if clip_score > max_clip_score:
max_clip_score = clip_score
fallback_label = caption_type
if not labels and fallback_label:
return fallback_label, max_clip_score
if not labels:
return self.default_prompt, 0.0
adjusted_weights = np.array(weights) ** (1.0 / max(self.clip_thr_temperature, 0.01))
normalized_weights = adjusted_weights / np.sum(adjusted_weights)
sampled_label = random.choices(labels, weights=normalized_weights, k=1)[0]
# sampled_label = random.choices(labels, weights=[1]*len(weights), k=1)[0]
index = labels.index(sampled_label)
original_weight = weights[index]
return sampled_label, original_weight
def get_data_info(self, idx):
try:
data = self.dataset[idx]
info = data[".json"]
key = data["__key__"]
version = info.get("version", "others")
return {"height": info["height"], "width": info["width"], "version": version, "key": key}
except Exception as e:
print(f"Error details: {str(e)}")
return None
if __name__ == "__main__":
from torch.utils.data import DataLoader
from diffusion.data.transforms import get_transform
image_size = 1024 # 256
transform = get_transform("default_train", image_size)
train_dataset = SanaWebDataset(
data_dir="debug_data_train/vaef32c32/debug_data",
resolution=image_size,
transform=transform,
max_length=300,
load_vae_feat=True,
num_replicas=1,
)
dataloader = DataLoader(train_dataset, batch_size=32, shuffle=False, num_workers=4)
for data in dataloader:
img, txt_fea, attention_mask, data_info = data
print(txt_fea)
break
|