File size: 2,438 Bytes
d643072 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import os
import time
from mmcv import Registry, build_from_cfg
from termcolor import colored
from torch.utils.data import DataLoader
from diffusion.data.transforms import get_transform
from diffusion.utils.logger import get_root_logger
DATASETS = Registry("datasets")
DATA_ROOT = "data"
def set_data_root(data_root):
global DATA_ROOT
DATA_ROOT = data_root
def get_data_path(data_dir):
if os.path.isabs(data_dir):
return data_dir
global DATA_ROOT
return os.path.join(DATA_ROOT, data_dir)
def get_data_root_and_path(data_dir):
if os.path.isabs(data_dir):
return data_dir
global DATA_ROOT
return DATA_ROOT, os.path.join(DATA_ROOT, data_dir)
def build_dataset(cfg, resolution=224, **kwargs):
logger = get_root_logger()
dataset_type = cfg.get("type")
logger.info(f"Constructing dataset {dataset_type}...")
t = time.time()
transform = cfg.pop("transform", "default_train")
transform = get_transform(transform, resolution)
dataset = build_from_cfg(cfg, DATASETS, default_args=dict(transform=transform, resolution=resolution, **kwargs))
logger.info(
f"{colored(f'Dataset {dataset_type} constructed: ', 'green', attrs=['bold'])}"
f"time: {(time.time() - t):.2f} s, length (use/ori): {len(dataset)}/{dataset.ori_imgs_nums}"
)
return dataset
def build_dataloader(dataset, batch_size=256, num_workers=4, shuffle=True, **kwargs):
if "batch_sampler" in kwargs:
dataloader = DataLoader(
dataset, batch_sampler=kwargs["batch_sampler"], num_workers=num_workers, pin_memory=True
)
else:
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, **kwargs
)
return dataloader
|