Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,17 @@ from flask import Flask, render_template, request, jsonify
|
|
3 |
import os
|
4 |
import re
|
5 |
import ffmpeg
|
6 |
-
from transformers import pipeline
|
7 |
from gtts import gTTS
|
8 |
from pydub import AudioSegment
|
9 |
from pydub.silence import detect_nonsilent
|
10 |
from waitress import serve
|
11 |
-
import whisper # Corrected whisper import
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
-
# Load Whisper Model
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
-
asr_model =
|
18 |
|
19 |
# Function to generate audio prompts
|
20 |
def generate_audio_prompt(text, filename):
|
@@ -32,7 +31,7 @@ prompts = {
|
|
32 |
for key, text in prompts.items():
|
33 |
generate_audio_prompt(text, f"{key}.mp3")
|
34 |
|
35 |
-
# Symbol mapping for
|
36 |
SYMBOL_MAPPING = {
|
37 |
"at the rate": "@",
|
38 |
"at": "@",
|
@@ -69,7 +68,7 @@ def clean_transcription(text):
|
|
69 |
def is_silent_audio(audio_path):
|
70 |
audio = AudioSegment.from_wav(audio_path)
|
71 |
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
|
72 |
-
return len(nonsilent_parts) == 0
|
73 |
|
74 |
@app.route("/")
|
75 |
def index():
|
@@ -93,8 +92,8 @@ def transcribe():
|
|
93 |
if is_silent_audio(output_audio_path):
|
94 |
return jsonify({"error": "No speech detected. Please try again."}), 400
|
95 |
|
96 |
-
#
|
97 |
-
result = asr_model
|
98 |
transcribed_text = clean_transcription(result["text"])
|
99 |
|
100 |
return jsonify({"text": transcribed_text})
|
|
|
3 |
import os
|
4 |
import re
|
5 |
import ffmpeg
|
6 |
+
from transformers import pipeline # ✅ Using correct Whisper ASR pipeline
|
7 |
from gtts import gTTS
|
8 |
from pydub import AudioSegment
|
9 |
from pydub.silence import detect_nonsilent
|
10 |
from waitress import serve
|
|
|
11 |
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
+
# ✅ Load Whisper ASR Model correctly
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3", device=0 if device == "cuda" else -1)
|
17 |
|
18 |
# Function to generate audio prompts
|
19 |
def generate_audio_prompt(text, filename):
|
|
|
31 |
for key, text in prompts.items():
|
32 |
generate_audio_prompt(text, f"{key}.mp3")
|
33 |
|
34 |
+
# Symbol mapping for proper recognition
|
35 |
SYMBOL_MAPPING = {
|
36 |
"at the rate": "@",
|
37 |
"at": "@",
|
|
|
68 |
def is_silent_audio(audio_path):
|
69 |
audio = AudioSegment.from_wav(audio_path)
|
70 |
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
|
71 |
+
return len(nonsilent_parts) == 0 # Returns True if silence detected
|
72 |
|
73 |
@app.route("/")
|
74 |
def index():
|
|
|
92 |
if is_silent_audio(output_audio_path):
|
93 |
return jsonify({"error": "No speech detected. Please try again."}), 400
|
94 |
|
95 |
+
# ✅ Use Whisper ASR model for transcription
|
96 |
+
result = asr_model(output_audio_path, generate_kwargs={"language": "en"})
|
97 |
transcribed_text = clean_transcription(result["text"])
|
98 |
|
99 |
return jsonify({"text": transcribed_text})
|