Spaces:
Runtime error
Runtime error
File size: 3,252 Bytes
bb0304e 8c49cb6 df66f6e 314f91a b1a1395 8c49cb6 3dfaf22 bb0304e 3dfaf22 bb0304e 3693dbd b1a1395 bb0304e 8c49cb6 b1a1395 bb0304e 8c49cb6 bb0304e 8c49cb6 bb0304e b1a1395 8c49cb6 adb0416 bb0304e 8c49cb6 bb0304e 8c49cb6 bb0304e 8c49cb6 eed1ccd 8c49cb6 bb0304e 8c49cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# populate.py
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
print("get_leaderboard_df: Starting to process leaderboard data.")
raw_data = get_raw_eval_results(results_path, requests_path)
print("get_leaderboard_df: Raw eval results obtained.")
all_data_json = [v.to_dict() for v in raw_data]
print(f"get_leaderboard_df: Converted raw data to JSON. Number of entries: {len(all_data_json)}")
df = pd.DataFrame.from_records(all_data_json)
print("get_leaderboard_df: DataFrame created from records.")
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df[cols].round(decimals=2)
print("get_leaderboard_df: DataFrame sorted and columns rounded.")
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
print("get_leaderboard_df: DataFrame filtered for NaN values in benchmarks.")
return raw_data, df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
print(f"get_evaluation_queue_df: Reading evaluation queue from {save_path}")
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
print(f"get_evaluation_queue_df: Processing file {entry}")
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
print(f"get_evaluation_queue_df: Processing file {sub_entry} in folder {entry}")
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
print("get_evaluation_queue_df: Evaluation dataframes created.")
return df_finished[cols], df_running[cols], df_pending[cols]
|