File size: 3,252 Bytes
bb0304e
 
8c49cb6
 
 
df66f6e
314f91a
b1a1395
8c49cb6
3dfaf22
bb0304e
3dfaf22
bb0304e
3693dbd
b1a1395
bb0304e
8c49cb6
b1a1395
bb0304e
 
8c49cb6
 
bb0304e
8c49cb6
 
 
bb0304e
b1a1395
8c49cb6
adb0416
bb0304e
8c49cb6
 
 
 
 
 
 
 
bb0304e
8c49cb6
 
 
 
 
 
 
 
 
 
 
 
bb0304e
8c49cb6
 
 
 
 
 
 
eed1ccd
8c49cb6
 
 
bb0304e
 
8c49cb6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# populate.py

import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results

def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
    print("get_leaderboard_df: Starting to process leaderboard data.")
    raw_data = get_raw_eval_results(results_path, requests_path)
    print("get_leaderboard_df: Raw eval results obtained.")

    all_data_json = [v.to_dict() for v in raw_data]
    print(f"get_leaderboard_df: Converted raw data to JSON. Number of entries: {len(all_data_json)}")

    df = pd.DataFrame.from_records(all_data_json)
    print("get_leaderboard_df: DataFrame created from records.")

    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df = df[cols].round(decimals=2)
    print("get_leaderboard_df: DataFrame sorted and columns rounded.")

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    print("get_leaderboard_df: DataFrame filtered for NaN values in benchmarks.")
    return raw_data, df

def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    print(f"get_evaluation_queue_df: Reading evaluation queue from {save_path}")
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)
            print(f"get_evaluation_queue_df: Processing file {entry}")

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)
                print(f"get_evaluation_queue_df: Processing file {sub_entry} in folder {entry}")

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    print("get_evaluation_queue_df: Evaluation dataframes created.")

    return df_finished[cols], df_running[cols], df_pending[cols]