try / app.py
gauravchand11's picture
Update app.py
829aed6 verified
raw
history blame
21.5 kB
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import streamlit as st
from PyPDF2 import PdfReader
import docx
import os
import re
import asyncio
from concurrent.futures import ThreadPoolExecutor
import torch
# Replace pytesseract with easyocr
import easyocr
from PIL import Image
import numpy as np
# Set up async environment for torch
if torch.cuda.is_available():
torch.multiprocessing.set_start_method('spawn', force=True)
# Initialize asyncio event loop
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Initialize EasyOCR reader
@st.cache_resource
def load_ocr_reader():
try:
return easyocr.Reader(['en']) # Initialize for English
except Exception as e:
st.error(f"Error loading OCR reader: {str(e)}")
return None
# Modified extract_text_from_image function with better error handling
def extract_text_from_image(image_file):
try:
# Get the OCR reader
reader = load_ocr_reader()
if reader is None:
raise Exception("Failed to initialize OCR reader")
# Read the image using PIL
image = Image.open(image_file)
# Convert to numpy array
image_np = np.array(image)
# Perform OCR
results = reader.readtext(image_np)
if not results:
return "No text was detected in the image."
# Extract text from results
text = "\n".join([result[1] for result in results])
return text.strip()
except Exception as e:
raise Exception(f"Error extracting text from image: {str(e)}")
# Modified extract_text function to support all file types
def extract_text(file):
try:
ext = os.path.splitext(file.name)[1].lower()
if ext == ".pdf":
try:
reader = PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
return text.strip()
except Exception as e:
raise Exception(f"Error reading PDF file: {str(e)}")
elif ext == ".docx":
try:
doc = docx.Document(file)
text = ""
for para in doc.paragraphs:
text += para.text + "\n"
return text.strip()
except Exception as e:
raise Exception(f"Error reading DOCX file: {str(e)}")
elif ext == ".txt":
try:
return file.read().decode("utf-8").strip()
except Exception as e:
raise Exception(f"Error reading TXT file: {str(e)}")
elif ext in [".jpg", ".jpeg", ".png"]:
try:
return extract_text_from_image(file)
except Exception as e:
raise Exception(f"Error processing image file: {str(e)}")
else:
raise ValueError("Unsupported file format. Please upload PDF, DOCX, TXT, or image files (JPG, JPEG, PNG).")
except Exception as e:
raise Exception(f"Error extracting text from file: {str(e)}")
# Load NLLB model and tokenizer with error handling
@st.cache_resource
def load_translation_model():
try:
model_name = "facebook/nllb-200-distilled-600M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
return tokenizer, model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None, None
# Initialize model
@st.cache_resource
def initialize_models():
tokenizer, model = load_translation_model()
if tokenizer is None or model is None:
st.error("Failed to initialize models")
return None
return {"nllb": (tokenizer, model)}
# Enhanced idiom mapping with more comprehensive translations
def preprocess_idioms(text, src_lang, tgt_lang):
idiom_map = {}
if src_lang == "en" and tgt_lang == "hi":
idiom_map = {
"no piece of cake": "कोई आसान काम नहीं",
"piece of cake": "बहुत आसान काम",
"bite the bullet": "दांतों तले उंगली दबाना",
"tackle it head-on": "सीधे मुकाबला करना",
"fell into place": "सब कुछ ठीक हो गया",
"see the light at the end of the tunnel": "मुश्किलों के अंत में उम्मीद की किरण दिखना",
"with a little perseverance": "थोड़े से धैर्य से",
# Additional common idioms
"break a leg": "बहुत बहुत शुभकामनाएं",
"hit the nail on the head": "बिल्कुल सही बात कहना",
"once in a blue moon": "बहुत कम, कभी-कभार",
"under the weather": "तबीयत ठीक नहीं",
"cost an arm and a leg": "बहुत महंगा",
"beating around the bush": "इधर-उधर की बात करना",
"call it a day": "काम समाप्त करना",
"burn the midnight oil": "रात-रात भर जागकर काम करना",
"get the ball rolling": "शुरुआत करना",
"pull yourself together": "खुद को संभालो",
"shoot yourself in the foot": "अपना ही नुकसान करना",
"take it with a grain of salt": "संदेह से लेना",
"the last straw": "सहनशीलता की आखिरी सीमा",
"time flies": "समय पंख लगाकर उड़ता है",
"wrap your head around": "समझने की कोशिश करना",
"cut corners": "काम में छोटा रास्ता अपनाना",
"back to square one": "फिर से शुरू से",
"blessing in disguise": "छिपा हुआ वरदान",
"cry over spilled milk": "बीती बात पर पछताना",
"keep your chin up": "हिम्मत रखना",
# Work-related idioms
"think outside the box": "नए तरीके से सोचना",
"raise the bar": "मानक ऊंचा करना",
"learning curve": "सीखने की प्रक्रिया",
"up and running": "चालू और कार्यरत",
"back to the drawing board": "फिर से योजना बनाना",
# Project-related phrases
"running into issues": "समस्याओं का सामना करना",
"iron out the bugs": "खामियां दूर करना",
"in the pipeline": "विचाराधीन",
"moving forward": "आगे बढ़ते हुए",
"touch base": "संपर्क में रहना",
# Technical phrases
"user-friendly": "उपयोगकर्ता के अनुकूल",
"cutting-edge": "अत्याधुनिक",
"state of the art": "अत्याधुनिक तकनीक",
"proof of concept": "व्यवहार्यता का प्रमाण",
"game changer": "खेल बदलने वाला"
}
elif src_lang == "en" and tgt_lang == "mr":
idiom_map = {
"no piece of cake": "सोपं काम नाही",
"piece of cake": "अतिशय सोपं काम",
"bite the bullet": "कठीण निर्णय घेणे",
"tackle it head-on": "समस्येला थेट सामोरे जाणे",
"fell into place": "सगळं व्यवस्थित झालं",
"see the light at the end of the tunnel": "अंधारातून उजेडाची किरण दिसणे",
"with a little perseverance": "थोड्या धीराने",
"break a leg": "खूप शुभेच्छा",
"hit the nail on the head": "अगदी बरोबर बोललात",
"once in a blue moon": "क्वचितच, कधीतरी",
"under the weather": "तब्येत ठीक नसणे",
"cost an arm and a leg": "खूप महाग",
"beating around the bush": "गोल गोल फिरवणे",
"call it a day": "दिवसाचं काम संपवणे",
"burn the midnight oil": "रात्रंदिवस मेहनत करणे",
"get the ball rolling": "सुरुवात करणे",
"pull yourself together": "स्वतःला सावरा",
"shoot yourself in the foot": "स्वतःचेच पाय स्वतः कापणे",
"take it with a grain of salt": "साशंक दृष्टीने पाहणे",
"the last straw": "सहनशक्तीची शेवटची मर्यादा",
"time flies": "वेळ पंख लावून उडतो",
"wrap your head around": "समजून घेण्याचा प्रयत्न करणे",
"cut corners": "कमी वेळात काम उरकणे",
"back to square one": "पुन्हा सुरुवातीला",
"blessing in disguise": "आशीर्वाद लपलेला",
"cry over spilled milk": "झालेल्या गोष्टीसाठी रडत बसणे",
"keep your chin up": "धीर धरा",
# Work-related idioms
"think outside the box": "वेगळ्या पद्धतीने विचार करणे",
"raise the bar": "पातळी उंचावणे",
"learning curve": "शिकण्याची प्रक्रिया",
"up and running": "सुरू आणि कार्यरत",
"back to the drawing board": "पुन्हा नव्याने योजना आखणे",
# Project-related phrases
"running into issues": "अडचणींना सामोरे जाणे",
"iron out the bugs": "त्रुटी दूर करणे",
"in the pipeline": "विचाराधीन",
"moving forward": "पुढे जाताना",
"touch base": "संपर्कात राहणे",
# Technical phrases
"user-friendly": "वापरकर्त्यास सोयीस्कर",
"cutting-edge": "अत्याधुनिक",
"state of the art": "सर्वोत्कृष्ट तंत्रज्ञान",
"proof of concept": "संकल्पनेची सिद्धता",
"game changer": "खेळ बदलणारी गोष्ट"
}
if idiom_map:
sorted_idioms = sorted(idiom_map.keys(), key=len, reverse=True)
pattern = '|'.join(map(re.escape, sorted_idioms))
def replace_idiom(match):
return idiom_map[match.group(0).lower()]
text = re.sub(pattern, replace_idiom, text, flags=re.IGNORECASE)
return text
# Async translation function with fixed idiom processing
async def translate_text_async(text, src_lang, tgt_lang, models):
if src_lang == tgt_lang:
return text
# Updated language mapping handling
src_lang_simple = src_lang.lower()
tgt_lang_simple = tgt_lang.lower()
lang_map = {"english": "eng_Latn", "hindi": "hin_Deva", "marathi": "mar_Deva"}
if src_lang_simple not in lang_map or tgt_lang_simple not in lang_map:
return "Error: Unsupported language combination"
try:
# Process idioms first
preprocessed_text = preprocess_idioms(text, src_lang_simple[:2], tgt_lang_simple[:2])
tgt_lang_code = lang_map[tgt_lang_simple]
tokenizer, model = models["nllb"]
chunks = []
current_chunk = ""
# Split text into chunks while preserving sentences
for sentence in re.split('([.!?।]+)', preprocessed_text):
if sentence.strip():
if len(current_chunk) + len(sentence) < 450:
current_chunk += sentence
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
translated_text = ""
# Translate each chunk
for chunk in chunks:
if chunk.strip():
inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
tgt_lang_id = tokenizer.convert_tokens_to_ids(tgt_lang_code)
translated = model.generate(
**inputs,
forced_bos_token_id=tgt_lang_id,
max_length=512,
num_beams=5,
length_penalty=1.0,
no_repeat_ngram_size=3
)
translated_chunk = tokenizer.decode(translated[0], skip_special_tokens=True)
translated_text += translated_chunk + " "
return translated_text.strip()
except Exception as e:
return f"Error during translation: {str(e)}"
# Synchronous wrapper for translation
def translate_text(text, src_lang, tgt_lang, models):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(translate_text_async(text, src_lang, tgt_lang, models))
finally:
loop.close()
def save_text_to_file(text, original_filename, prefix="translated"):
try:
# Get the original file extension and base name
base_name = os.path.splitext(os.path.basename(original_filename))[0]
output_filename = f"{prefix}_{base_name}.txt"
# Save all translations as text files for simplicity and build speed
with open(output_filename, "w", encoding="utf-8") as f:
f.write(text)
return output_filename
except Exception as e:
st.error(f"Error saving file: {str(e)}")
return None
# Modified process_document function to handle multiple formats
def process_document(file, source_lang, target_lang, models):
try:
text = extract_text(file)
translated_text = translate_text(text, source_lang, target_lang, models)
if translated_text.startswith("Error:"):
output_file = save_text_to_file(translated_text, file.name, prefix="error")
else:
output_file = save_text_to_file(translated_text, file.name)
if output_file is None:
raise Exception("Failed to save output file")
return output_file, translated_text
except Exception as e:
error_message = f"Error: {str(e)}"
output_file = save_text_to_file(error_message, file.name, prefix="error")
return output_file, error_message
# Modified main function to ensure proper language handling
def main():
st.title("Document Translation Toolkit")
# Initialize models with error handling
models = initialize_models()
if models is None:
st.error("Failed to initialize translation models. Please try again.")
return
# Create tabs for different translation modes
tab1, tab2 = st.tabs(["Document Translation", "Text Translation"])
# Document Translation Tab
with tab1:
st.subheader("Document Translation")
st.write("Upload a document (PDF, DOCX, TXT, or Image) and select languages.")
uploaded_file = st.file_uploader(
"Upload Document",
type=["pdf", "docx", "txt", "jpg", "jpeg", "png"],
key="doc_uploader"
)
col1, col2 = st.columns(2)
with col1:
source_lang = st.selectbox(
"Source Language",
["English", "Hindi", "Marathi"],
index=0,
key="doc_src"
)
with col2:
target_lang = st.selectbox(
"Target Language",
["English", "Hindi", "Marathi"],
index=1,
key="doc_tgt"
)
if uploaded_file is not None and st.button("Translate Document"):
try:
with st.spinner("Translating..."):
# Extract and show input text
input_text = extract_text(uploaded_file)
st.subheader("Input Text")
st.text_area("Original Text", input_text, height=200)
# Translate and show output text
output_file, result_text = process_document(
uploaded_file,
source_lang.lower(),
target_lang.lower(),
models
)
st.subheader("Translated Text")
st.text_area("Translation", result_text, height=200)
# Provide download button with correct MIME type
if output_file and os.path.exists(output_file):
with open(output_file, "rb") as file:
# Set appropriate MIME type based on file extension
ext = os.path.splitext(output_file)[1].lower()
mime_types = {
'.pdf': 'application/pdf',
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'.txt': 'text/plain',
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png'
}
mime_type = mime_types.get(ext, 'text/plain')
st.download_button(
label="Download Translated Document",
data=file,
file_name=os.path.basename(output_file),
mime=mime_type
)
else:
st.error("Failed to generate output file")
except Exception as e:
st.error(f"An error occurred during translation: {str(e)}")
# Text Translation Tab
with tab2:
st.subheader("Text Translation")
st.write("Enter text directly for translation.")
col1, col2 = st.columns(2)
with col1:
text_source_lang = st.selectbox(
"Source Language",
["English", "Hindi", "Marathi"],
index=0,
key="text_src"
)
with col2:
text_target_lang = st.selectbox(
"Target Language",
["English", "Hindi", "Marathi"],
index=1,
key="text_tgt"
)
input_text = st.text_area("Enter text to translate", height=150)
if input_text and st.button("Translate Text"):
try:
with st.spinner("Translating..."):
# Translate the input text
translated_text = translate_text(
input_text,
text_source_lang.lower(),
text_target_lang.lower(),
models
)
# Show translation result
st.text_area("Translation", translated_text, height=150)
# Add download button for translated text
st.download_button(
label="Download Translation",
data=translated_text,
file_name="translation.txt",
mime="text/plain"
)
except Exception as e:
st.error(f"An error occurred during translation: {str(e)}")
if __name__ == "__main__":
try:
main()
except Exception as e:
st.error(f"Application error: {str(e)}")