Spaces:
Build error
Build error
File size: 21,480 Bytes
2ea2438 67419d9 c124a1a 67419d9 c98f2e3 1337d1b 829aed6 4174664 829aed6 c124a1a 2ea2438 829aed6 2ea2438 829aed6 2ea2438 829aed6 2ea2438 829aed6 2ea2438 829aed6 2ea2438 829aed6 2ea2438 ed75acb 2ea2438 77a6efe 2ea2438 77a6efe 829aed6 c124a1a 5e3207d 829aed6 c124a1a 829aed6 c124a1a 829aed6 8b4e117 829aed6 8b4e117 829aed6 8b4e117 829aed6 8b4e117 829aed6 8b4e117 829aed6 2ea2438 829aed6 2ea2438 829aed6 2ea2438 829aed6 2ea2438 829aed6 8b4e117 f72c1a5 829aed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import streamlit as st
from PyPDF2 import PdfReader
import docx
import os
import re
import asyncio
from concurrent.futures import ThreadPoolExecutor
import torch
# Replace pytesseract with easyocr
import easyocr
from PIL import Image
import numpy as np
# Set up async environment for torch
if torch.cuda.is_available():
torch.multiprocessing.set_start_method('spawn', force=True)
# Initialize asyncio event loop
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Initialize EasyOCR reader
@st.cache_resource
def load_ocr_reader():
try:
return easyocr.Reader(['en']) # Initialize for English
except Exception as e:
st.error(f"Error loading OCR reader: {str(e)}")
return None
# Modified extract_text_from_image function with better error handling
def extract_text_from_image(image_file):
try:
# Get the OCR reader
reader = load_ocr_reader()
if reader is None:
raise Exception("Failed to initialize OCR reader")
# Read the image using PIL
image = Image.open(image_file)
# Convert to numpy array
image_np = np.array(image)
# Perform OCR
results = reader.readtext(image_np)
if not results:
return "No text was detected in the image."
# Extract text from results
text = "\n".join([result[1] for result in results])
return text.strip()
except Exception as e:
raise Exception(f"Error extracting text from image: {str(e)}")
# Modified extract_text function to support all file types
def extract_text(file):
try:
ext = os.path.splitext(file.name)[1].lower()
if ext == ".pdf":
try:
reader = PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() + "\n"
return text.strip()
except Exception as e:
raise Exception(f"Error reading PDF file: {str(e)}")
elif ext == ".docx":
try:
doc = docx.Document(file)
text = ""
for para in doc.paragraphs:
text += para.text + "\n"
return text.strip()
except Exception as e:
raise Exception(f"Error reading DOCX file: {str(e)}")
elif ext == ".txt":
try:
return file.read().decode("utf-8").strip()
except Exception as e:
raise Exception(f"Error reading TXT file: {str(e)}")
elif ext in [".jpg", ".jpeg", ".png"]:
try:
return extract_text_from_image(file)
except Exception as e:
raise Exception(f"Error processing image file: {str(e)}")
else:
raise ValueError("Unsupported file format. Please upload PDF, DOCX, TXT, or image files (JPG, JPEG, PNG).")
except Exception as e:
raise Exception(f"Error extracting text from file: {str(e)}")
# Load NLLB model and tokenizer with error handling
@st.cache_resource
def load_translation_model():
try:
model_name = "facebook/nllb-200-distilled-600M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
return tokenizer, model
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None, None
# Initialize model
@st.cache_resource
def initialize_models():
tokenizer, model = load_translation_model()
if tokenizer is None or model is None:
st.error("Failed to initialize models")
return None
return {"nllb": (tokenizer, model)}
# Enhanced idiom mapping with more comprehensive translations
def preprocess_idioms(text, src_lang, tgt_lang):
idiom_map = {}
if src_lang == "en" and tgt_lang == "hi":
idiom_map = {
"no piece of cake": "कोई आसान काम नहीं",
"piece of cake": "बहुत आसान काम",
"bite the bullet": "दांतों तले उंगली दबाना",
"tackle it head-on": "सीधे मुकाबला करना",
"fell into place": "सब कुछ ठीक हो गया",
"see the light at the end of the tunnel": "मुश्किलों के अंत में उम्मीद की किरण दिखना",
"with a little perseverance": "थोड़े से धैर्य से",
# Additional common idioms
"break a leg": "बहुत बहुत शुभकामनाएं",
"hit the nail on the head": "बिल्कुल सही बात कहना",
"once in a blue moon": "बहुत कम, कभी-कभार",
"under the weather": "तबीयत ठीक नहीं",
"cost an arm and a leg": "बहुत महंगा",
"beating around the bush": "इधर-उधर की बात करना",
"call it a day": "काम समाप्त करना",
"burn the midnight oil": "रात-रात भर जागकर काम करना",
"get the ball rolling": "शुरुआत करना",
"pull yourself together": "खुद को संभालो",
"shoot yourself in the foot": "अपना ही नुकसान करना",
"take it with a grain of salt": "संदेह से लेना",
"the last straw": "सहनशीलता की आखिरी सीमा",
"time flies": "समय पंख लगाकर उड़ता है",
"wrap your head around": "समझने की कोशिश करना",
"cut corners": "काम में छोटा रास्ता अपनाना",
"back to square one": "फिर से शुरू से",
"blessing in disguise": "छिपा हुआ वरदान",
"cry over spilled milk": "बीती बात पर पछताना",
"keep your chin up": "हिम्मत रखना",
# Work-related idioms
"think outside the box": "नए तरीके से सोचना",
"raise the bar": "मानक ऊंचा करना",
"learning curve": "सीखने की प्रक्रिया",
"up and running": "चालू और कार्यरत",
"back to the drawing board": "फिर से योजना बनाना",
# Project-related phrases
"running into issues": "समस्याओं का सामना करना",
"iron out the bugs": "खामियां दूर करना",
"in the pipeline": "विचाराधीन",
"moving forward": "आगे बढ़ते हुए",
"touch base": "संपर्क में रहना",
# Technical phrases
"user-friendly": "उपयोगकर्ता के अनुकूल",
"cutting-edge": "अत्याधुनिक",
"state of the art": "अत्याधुनिक तकनीक",
"proof of concept": "व्यवहार्यता का प्रमाण",
"game changer": "खेल बदलने वाला"
}
elif src_lang == "en" and tgt_lang == "mr":
idiom_map = {
"no piece of cake": "सोपं काम नाही",
"piece of cake": "अतिशय सोपं काम",
"bite the bullet": "कठीण निर्णय घेणे",
"tackle it head-on": "समस्येला थेट सामोरे जाणे",
"fell into place": "सगळं व्यवस्थित झालं",
"see the light at the end of the tunnel": "अंधारातून उजेडाची किरण दिसणे",
"with a little perseverance": "थोड्या धीराने",
"break a leg": "खूप शुभेच्छा",
"hit the nail on the head": "अगदी बरोबर बोललात",
"once in a blue moon": "क्वचितच, कधीतरी",
"under the weather": "तब्येत ठीक नसणे",
"cost an arm and a leg": "खूप महाग",
"beating around the bush": "गोल गोल फिरवणे",
"call it a day": "दिवसाचं काम संपवणे",
"burn the midnight oil": "रात्रंदिवस मेहनत करणे",
"get the ball rolling": "सुरुवात करणे",
"pull yourself together": "स्वतःला सावरा",
"shoot yourself in the foot": "स्वतःचेच पाय स्वतः कापणे",
"take it with a grain of salt": "साशंक दृष्टीने पाहणे",
"the last straw": "सहनशक्तीची शेवटची मर्यादा",
"time flies": "वेळ पंख लावून उडतो",
"wrap your head around": "समजून घेण्याचा प्रयत्न करणे",
"cut corners": "कमी वेळात काम उरकणे",
"back to square one": "पुन्हा सुरुवातीला",
"blessing in disguise": "आशीर्वाद लपलेला",
"cry over spilled milk": "झालेल्या गोष्टीसाठी रडत बसणे",
"keep your chin up": "धीर धरा",
# Work-related idioms
"think outside the box": "वेगळ्या पद्धतीने विचार करणे",
"raise the bar": "पातळी उंचावणे",
"learning curve": "शिकण्याची प्रक्रिया",
"up and running": "सुरू आणि कार्यरत",
"back to the drawing board": "पुन्हा नव्याने योजना आखणे",
# Project-related phrases
"running into issues": "अडचणींना सामोरे जाणे",
"iron out the bugs": "त्रुटी दूर करणे",
"in the pipeline": "विचाराधीन",
"moving forward": "पुढे जाताना",
"touch base": "संपर्कात राहणे",
# Technical phrases
"user-friendly": "वापरकर्त्यास सोयीस्कर",
"cutting-edge": "अत्याधुनिक",
"state of the art": "सर्वोत्कृष्ट तंत्रज्ञान",
"proof of concept": "संकल्पनेची सिद्धता",
"game changer": "खेळ बदलणारी गोष्ट"
}
if idiom_map:
sorted_idioms = sorted(idiom_map.keys(), key=len, reverse=True)
pattern = '|'.join(map(re.escape, sorted_idioms))
def replace_idiom(match):
return idiom_map[match.group(0).lower()]
text = re.sub(pattern, replace_idiom, text, flags=re.IGNORECASE)
return text
# Async translation function with fixed idiom processing
async def translate_text_async(text, src_lang, tgt_lang, models):
if src_lang == tgt_lang:
return text
# Updated language mapping handling
src_lang_simple = src_lang.lower()
tgt_lang_simple = tgt_lang.lower()
lang_map = {"english": "eng_Latn", "hindi": "hin_Deva", "marathi": "mar_Deva"}
if src_lang_simple not in lang_map or tgt_lang_simple not in lang_map:
return "Error: Unsupported language combination"
try:
# Process idioms first
preprocessed_text = preprocess_idioms(text, src_lang_simple[:2], tgt_lang_simple[:2])
tgt_lang_code = lang_map[tgt_lang_simple]
tokenizer, model = models["nllb"]
chunks = []
current_chunk = ""
# Split text into chunks while preserving sentences
for sentence in re.split('([.!?।]+)', preprocessed_text):
if sentence.strip():
if len(current_chunk) + len(sentence) < 450:
current_chunk += sentence
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk:
chunks.append(current_chunk)
translated_text = ""
# Translate each chunk
for chunk in chunks:
if chunk.strip():
inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
tgt_lang_id = tokenizer.convert_tokens_to_ids(tgt_lang_code)
translated = model.generate(
**inputs,
forced_bos_token_id=tgt_lang_id,
max_length=512,
num_beams=5,
length_penalty=1.0,
no_repeat_ngram_size=3
)
translated_chunk = tokenizer.decode(translated[0], skip_special_tokens=True)
translated_text += translated_chunk + " "
return translated_text.strip()
except Exception as e:
return f"Error during translation: {str(e)}"
# Synchronous wrapper for translation
def translate_text(text, src_lang, tgt_lang, models):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
return loop.run_until_complete(translate_text_async(text, src_lang, tgt_lang, models))
finally:
loop.close()
def save_text_to_file(text, original_filename, prefix="translated"):
try:
# Get the original file extension and base name
base_name = os.path.splitext(os.path.basename(original_filename))[0]
output_filename = f"{prefix}_{base_name}.txt"
# Save all translations as text files for simplicity and build speed
with open(output_filename, "w", encoding="utf-8") as f:
f.write(text)
return output_filename
except Exception as e:
st.error(f"Error saving file: {str(e)}")
return None
# Modified process_document function to handle multiple formats
def process_document(file, source_lang, target_lang, models):
try:
text = extract_text(file)
translated_text = translate_text(text, source_lang, target_lang, models)
if translated_text.startswith("Error:"):
output_file = save_text_to_file(translated_text, file.name, prefix="error")
else:
output_file = save_text_to_file(translated_text, file.name)
if output_file is None:
raise Exception("Failed to save output file")
return output_file, translated_text
except Exception as e:
error_message = f"Error: {str(e)}"
output_file = save_text_to_file(error_message, file.name, prefix="error")
return output_file, error_message
# Modified main function to ensure proper language handling
def main():
st.title("Document Translation Toolkit")
# Initialize models with error handling
models = initialize_models()
if models is None:
st.error("Failed to initialize translation models. Please try again.")
return
# Create tabs for different translation modes
tab1, tab2 = st.tabs(["Document Translation", "Text Translation"])
# Document Translation Tab
with tab1:
st.subheader("Document Translation")
st.write("Upload a document (PDF, DOCX, TXT, or Image) and select languages.")
uploaded_file = st.file_uploader(
"Upload Document",
type=["pdf", "docx", "txt", "jpg", "jpeg", "png"],
key="doc_uploader"
)
col1, col2 = st.columns(2)
with col1:
source_lang = st.selectbox(
"Source Language",
["English", "Hindi", "Marathi"],
index=0,
key="doc_src"
)
with col2:
target_lang = st.selectbox(
"Target Language",
["English", "Hindi", "Marathi"],
index=1,
key="doc_tgt"
)
if uploaded_file is not None and st.button("Translate Document"):
try:
with st.spinner("Translating..."):
# Extract and show input text
input_text = extract_text(uploaded_file)
st.subheader("Input Text")
st.text_area("Original Text", input_text, height=200)
# Translate and show output text
output_file, result_text = process_document(
uploaded_file,
source_lang.lower(),
target_lang.lower(),
models
)
st.subheader("Translated Text")
st.text_area("Translation", result_text, height=200)
# Provide download button with correct MIME type
if output_file and os.path.exists(output_file):
with open(output_file, "rb") as file:
# Set appropriate MIME type based on file extension
ext = os.path.splitext(output_file)[1].lower()
mime_types = {
'.pdf': 'application/pdf',
'.docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
'.txt': 'text/plain',
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png'
}
mime_type = mime_types.get(ext, 'text/plain')
st.download_button(
label="Download Translated Document",
data=file,
file_name=os.path.basename(output_file),
mime=mime_type
)
else:
st.error("Failed to generate output file")
except Exception as e:
st.error(f"An error occurred during translation: {str(e)}")
# Text Translation Tab
with tab2:
st.subheader("Text Translation")
st.write("Enter text directly for translation.")
col1, col2 = st.columns(2)
with col1:
text_source_lang = st.selectbox(
"Source Language",
["English", "Hindi", "Marathi"],
index=0,
key="text_src"
)
with col2:
text_target_lang = st.selectbox(
"Target Language",
["English", "Hindi", "Marathi"],
index=1,
key="text_tgt"
)
input_text = st.text_area("Enter text to translate", height=150)
if input_text and st.button("Translate Text"):
try:
with st.spinner("Translating..."):
# Translate the input text
translated_text = translate_text(
input_text,
text_source_lang.lower(),
text_target_lang.lower(),
models
)
# Show translation result
st.text_area("Translation", translated_text, height=150)
# Add download button for translated text
st.download_button(
label="Download Translation",
data=translated_text,
file_name="translation.txt",
mime="text/plain"
)
except Exception as e:
st.error(f"An error occurred during translation: {str(e)}")
if __name__ == "__main__":
try:
main()
except Exception as e:
st.error(f"Application error: {str(e)}") |