Spaces:
Build error
Build error
File size: 12,189 Bytes
67419d9 4174664 67419d9 c98f2e3 23bd434 f88b938 5a89d4a 4174664 698647f 5a89d4a 698647f 5a89d4a 698647f 5a89d4a 698647f 67419d9 698647f c98f2e3 67419d9 698647f 67419d9 c98f2e3 698647f bcda6d5 67419d9 f88b938 4174664 698647f 4174664 698647f 4174664 bcda6d5 90c759f 4174664 698647f 4174664 698647f 4174664 90c759f 4174664 698647f 4174664 67419d9 4174664 67419d9 bcda6d5 67419d9 4174664 67419d9 4174664 67419d9 698647f 4174664 90c759f 4174664 698647f 4174664 698647f 4174664 f88b938 4174664 67419d9 4174664 67419d9 4174664 c98f2e3 698647f c98f2e3 90c759f 698647f c98f2e3 4174664 c98f2e3 4174664 90c759f 4174664 90c759f 698647f 4174664 698647f 4174664 c98f2e3 4174664 67419d9 bcda6d5 67419d9 5a89d4a 67419d9 c98f2e3 4174664 67419d9 5a89d4a 67419d9 5a89d4a 698647f 5a89d4a 698647f 5a89d4a 698647f 5a89d4a 698647f 5a89d4a 698647f 5a89d4a 67419d9 698647f 67419d9 5a89d4a 67419d9 698647f 67419d9 5a89d4a 67419d9 698647f 67419d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import streamlit as st
import PyPDF2
import docx
import io
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, MT5ForConditionalGeneration
import torch
from pathlib import Path
import tempfile
from typing import Union, Tuple
import os
import sys
from datetime import datetime, timezone
import warnings
# Filter warnings
warnings.filterwarnings('ignore', category=UserWarning)
# Page config
st.set_page_config(
page_title="Document Translation App",
page_icon="🌐",
layout="wide"
)
# Display system info
st.sidebar.markdown(f"""
### System Information
**Current UTC Time:** {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')}
**User:** {os.environ.get('USER', 'gauravchand')}
""")
# Get Hugging Face token
HF_TOKEN = os.environ.get('HF_TOKEN')
if not HF_TOKEN:
st.error("HF_TOKEN not found in environment variables. Please add it in the Spaces settings.")
st.stop()
# Language configurations
SUPPORTED_LANGUAGES = {
'English': 'eng_Latn',
'Hindi': 'hin_Deva',
'Marathi': 'mar_Deva'
}
MT5_LANG_CODES = {
'eng_Latn': 'en',
'hin_Deva': 'hi',
'mar_Deva': 'mr'
}
def get_nllb_lang_token(lang_code: str) -> str:
"""Get the correct token format for NLLB model."""
return f"___{lang_code}___"
def extract_text_from_file(uploaded_file) -> str:
"""Extract text content from uploaded file based on its type."""
file_extension = Path(uploaded_file.name).suffix.lower()
if file_extension == '.pdf':
return extract_from_pdf(uploaded_file)
elif file_extension == '.docx':
return extract_from_docx(uploaded_file)
elif file_extension == '.txt':
return uploaded_file.getvalue().decode('utf-8')
else:
raise ValueError(f"Unsupported file format: {file_extension}")
def extract_from_pdf(file) -> str:
"""Extract text from PDF file."""
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text.strip()
def extract_from_docx(file) -> str:
"""Extract text from DOCX file."""
doc = docx.Document(file)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text.strip()
def batch_process_text(text: str, max_length: int = 512) -> list:
"""Split text into batches for processing."""
words = text.split()
batches = []
current_batch = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > max_length:
batches.append(" ".join(current_batch))
current_batch = [word]
current_length = len(word)
else:
current_batch.append(word)
current_length += len(word) + 1
if current_batch:
batches.append(" ".join(current_batch))
return batches
@st.cache_resource
def load_models():
"""Load and cache the translation and context interpretation models."""
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Gemma model
gemma_tokenizer = AutoTokenizer.from_pretrained(
"google/gemma-2b",
token=HF_TOKEN,
trust_remote_code=True
)
gemma_model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
token=HF_TOKEN,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
# Load NLLB model
nllb_tokenizer = AutoTokenizer.from_pretrained(
"facebook/nllb-200-distilled-600M",
token=HF_TOKEN,
use_fast=False,
trust_remote_code=True
)
nllb_model = AutoModelForSeq2SeqLM.from_pretrained(
"facebook/nllb-200-distilled-600M",
token=HF_TOKEN,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
# Load MT5 model
mt5_tokenizer = AutoTokenizer.from_pretrained(
"google/mt5-base",
token=HF_TOKEN,
trust_remote_code=True
)
mt5_model = MT5ForConditionalGeneration.from_pretrained(
"google/mt5-base",
token=HF_TOKEN,
torch_dtype=torch.float16,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
if not torch.cuda.is_available():
gemma_model = gemma_model.to(device)
nllb_model = nllb_model.to(device)
mt5_model = mt5_model.to(device)
return (gemma_tokenizer, gemma_model), (nllb_tokenizer, nllb_model), (mt5_tokenizer, mt5_model)
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.error(f"Python version: {sys.version}")
st.error(f"PyTorch version: {torch.__version__}")
raise e
@torch.no_grad()
def interpret_context(text: str, gemma_tuple: Tuple) -> str:
"""Use Gemma model to interpret context and understand regional nuances."""
tokenizer, model = gemma_tuple
batches = batch_process_text(text)
interpreted_batches = []
for batch in batches:
prompt = f"""Analyze and maintain the core meaning of this text: {batch}"""
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_length=512,
do_sample=True,
temperature=0.3,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1
)
interpreted_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
interpreted_text = interpreted_text.replace(prompt, "").strip()
interpreted_batches.append(interpreted_text)
return " ".join(interpreted_batches)
@torch.no_grad()
def translate_text(text: str, source_lang: str, target_lang: str, nllb_tuple: Tuple) -> str:
"""Translate text using NLLB model."""
tokenizer, model = nllb_tuple
batches = batch_process_text(text)
translated_batches = []
target_lang_token = get_nllb_lang_token(target_lang)
for batch in batches:
inputs = tokenizer(batch, return_tensors="pt", max_length=512, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
target_lang_id = tokenizer.convert_tokens_to_ids(target_lang_token)
outputs = model.generate(
**inputs,
forced_bos_token_id=target_lang_id,
max_length=512,
do_sample=True,
temperature=0.7,
num_beams=5,
num_return_sequences=1
)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
translated_batches.append(translated_text)
return " ".join(translated_batches)
@torch.no_grad()
def correct_grammar(text: str, target_lang: str, mt5_tuple: Tuple) -> str:
"""Correct grammar using MT5 model."""
tokenizer, model = mt5_tuple
lang_code = MT5_LANG_CODES[target_lang]
prompts = {
'en': "Fix grammar: ",
'hi': "व्याकरण सुधार: ",
'mr': "व्याकरण सुधार: "
}
batches = batch_process_text(text)
corrected_batches = []
for batch in batches:
input_text = f"{prompts[lang_code]}{batch}"
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
outputs = model.generate(
**inputs,
max_length=512,
num_beams=5,
length_penalty=1.0,
early_stopping=True,
no_repeat_ngram_size=2,
do_sample=False
)
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
for prefix in prompts.values():
corrected_text = corrected_text.replace(prefix, "")
corrected_text = (corrected_text.replace("<extra_id_0>", "")
.replace("<extra_id_1>", "")
.strip())
corrected_batches.append(corrected_text)
return " ".join(corrected_batches)
def save_as_docx(text: str) -> io.BytesIO:
"""Save translated text as a DOCX file."""
doc = docx.Document()
doc.add_paragraph(text)
docx_buffer = io.BytesIO()
doc.save(docx_buffer)
docx_buffer.seek(0)
return docx_buffer
def main():
st.title("🌐 Document Translation App")
# Load models
with st.spinner("Loading models... This may take a few minutes."):
try:
gemma_tuple, nllb_tuple, mt5_tuple = load_models()
except Exception as e:
st.error(f"Error loading models: {str(e)}")
return
# File upload
uploaded_file = st.file_uploader(
"Upload your document (PDF, DOCX, or TXT)",
type=['pdf', 'docx', 'txt']
)
# Language selection
col1, col2 = st.columns(2)
with col1:
source_language = st.selectbox(
"Source Language",
options=list(SUPPORTED_LANGUAGES.keys()),
index=0
)
with col2:
target_language = st.selectbox(
"Target Language",
options=list(SUPPORTED_LANGUAGES.keys()),
index=1
)
if uploaded_file and st.button("Translate", type="primary"):
try:
progress_bar = st.progress(0)
# Process document
with st.spinner("Processing document..."):
text = extract_text_from_file(uploaded_file)
progress_bar.progress(25)
interpreted_text = interpret_context(text, gemma_tuple)
progress_bar.progress(50)
translated_text = translate_text(
interpreted_text,
SUPPORTED_LANGUAGES[source_language],
SUPPORTED_LANGUAGES[target_language],
nllb_tuple
)
progress_bar.progress(75)
final_text = correct_grammar(
translated_text,
SUPPORTED_LANGUAGES[target_language],
mt5_tuple
)
progress_bar.progress(90)
# Display result
st.markdown("### Translation Result")
st.text_area(
label="Translated Text",
value=final_text,
height=200,
key="translation_result"
)
# Download options
st.markdown("### Download Options")
col1, col2 = st.columns(2)
with col1:
# Text file download
text_buffer = io.BytesIO()
text_buffer.write(final_text.encode())
text_buffer.seek(0)
st.download_button(
label="Download as TXT",
data=text_buffer,
file_name="translated_document.txt",
mime="text/plain"
)
with col2:
# DOCX file download
docx_buffer = save_as_docx(final_text)
st.download_button(
label="Download as DOCX",
data=docx_buffer,
file_name="translated_document.docx",
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
)
progress_bar.progress(100)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main() |