Spaces:
Running
Running
upload model
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoModel, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from collections import Counter
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# Load paraphrase model and tokenizer
|
13 |
+
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
|
14 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model = model.to(device)
|
18 |
+
|
19 |
+
# Load Sentence-BERT model for semantic similarity calculation
|
20 |
+
embed_model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
21 |
+
embed_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
22 |
+
embed_model = embed_model.to(device)
|
23 |
+
|
24 |
+
# Function to get sentence embeddings
|
25 |
+
def get_sentence_embedding(sentence):
|
26 |
+
inputs = embed_tokenizer(sentence, return_tensors="pt", padding=True).to(device)
|
27 |
+
with torch.no_grad():
|
28 |
+
embeddings = embed_model(**inputs).last_hidden_state.mean(dim=1)
|
29 |
+
return embeddings
|
30 |
+
|
31 |
+
# Paraphrasing function
|
32 |
+
def paraphrase_sentence(sentence):
|
33 |
+
# Updated prompt for statement-like output
|
34 |
+
text = "rephrase as a statement: " + sentence
|
35 |
+
encoding = tokenizer.encode_plus(text, padding=False, return_tensors="pt")
|
36 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
37 |
+
|
38 |
+
beam_outputs = model.generate(
|
39 |
+
input_ids=input_ids,
|
40 |
+
attention_mask=attention_masks,
|
41 |
+
do_sample=True,
|
42 |
+
max_length=128,
|
43 |
+
top_k=40, # Reduced top_k for less randomness
|
44 |
+
top_p=0.85, # Reduced top_p for focused sampling
|
45 |
+
early_stopping=True,
|
46 |
+
num_return_sequences=5 # Generate 5 paraphrases
|
47 |
+
)
|
48 |
+
|
49 |
+
# Decode and format paraphrases with numbering
|
50 |
+
paraphrases = []
|
51 |
+
for i, line in enumerate(beam_outputs, 1):
|
52 |
+
paraphrase = tokenizer.decode(line, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
53 |
+
paraphrases.append(f"{i}. {paraphrase}")
|
54 |
+
|
55 |
+
return "\n".join(paraphrases)
|
56 |
+
|
57 |
+
# Precision, Recall, and Overall Accuracy Calculation
|
58 |
+
def calculate_precision_recall_accuracy(sentences):
|
59 |
+
total_similarity = 0
|
60 |
+
paraphrase_count = 0
|
61 |
+
total_precision = 0
|
62 |
+
total_recall = 0
|
63 |
+
|
64 |
+
for sentence in sentences:
|
65 |
+
paraphrases = paraphrase_sentence(sentence).split("\n")
|
66 |
+
|
67 |
+
# Get the original embedding and token counts
|
68 |
+
original_embedding = get_sentence_embedding(sentence)
|
69 |
+
original_tokens = Counter(sentence.lower().split())
|
70 |
+
|
71 |
+
for paraphrase in paraphrases:
|
72 |
+
# Remove numbering before evaluation
|
73 |
+
paraphrase = paraphrase.split(". ", 1)[1]
|
74 |
+
paraphrase_embedding = get_sentence_embedding(paraphrase)
|
75 |
+
similarity = cosine_similarity(original_embedding.cpu(), paraphrase_embedding.cpu())[0][0]
|
76 |
+
total_similarity += similarity
|
77 |
+
|
78 |
+
# Calculate precision and recall based on token overlap
|
79 |
+
paraphrase_tokens = Counter(paraphrase.lower().split())
|
80 |
+
overlap = sum((paraphrase_tokens & original_tokens).values())
|
81 |
+
precision = overlap / sum(paraphrase_tokens.values()) if paraphrase_tokens else 0
|
82 |
+
recall = overlap / sum(original_tokens.values()) if original_tokens else 0
|
83 |
+
|
84 |
+
total_precision += precision
|
85 |
+
total_recall += recall
|
86 |
+
paraphrase_count += 1
|
87 |
+
|
88 |
+
# Calculate averages for accuracy, precision, and recall
|
89 |
+
overall_accuracy = (total_similarity / paraphrase_count) * 100
|
90 |
+
avg_precision = (total_precision / paraphrase_count) * 100
|
91 |
+
avg_recall = (total_recall / paraphrase_count) * 100
|
92 |
+
|
93 |
+
print(f"Overall Model Accuracy (Semantic Similarity): {overall_accuracy:.2f}%")
|
94 |
+
print(f"Average Precision (Token Overlap): {avg_precision:.2f}%")
|
95 |
+
print(f"Average Recall (Token Overlap): {avg_recall:.2f}%")
|
96 |
+
|
97 |
+
# Define Gradio UI
|
98 |
+
iface = gr.Interface(
|
99 |
+
fn=paraphrase_sentence,
|
100 |
+
inputs="text",
|
101 |
+
outputs="text",
|
102 |
+
title="PARA-GEN (T5 Paraphraser)",
|
103 |
+
description="Enter a sentence, and the model will generate five numbered paraphrases in statement form."
|
104 |
+
)
|
105 |
+
|
106 |
+
# List of test sentences to evaluate metrics
|
107 |
+
test_sentences = [
|
108 |
+
"The quick brown fox jumps over the lazy dog.",
|
109 |
+
"Artificial intelligence is transforming industries.",
|
110 |
+
"The weather is sunny and warm today.",
|
111 |
+
"He enjoys reading books on machine learning.",
|
112 |
+
"The stock market fluctuates daily due to various factors."
|
113 |
+
]
|
114 |
+
|
115 |
+
# Calculate overall accuracy, precision, and recall for the list of test sentences
|
116 |
+
calculate_precision_recall_accuracy(test_sentences)
|
117 |
+
|
118 |
+
# Launch Gradio app (Gradio UI will not show metrics)
|
119 |
+
iface.launch(share=False)
|