Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,54 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import datetime
|
4 |
import numpy as np
|
5 |
-
|
|
|
|
|
6 |
|
7 |
class AIHRAgent:
|
8 |
def __init__(self):
|
9 |
-
|
|
|
10 |
self.employee_records = pd.DataFrame(columns=["Name", "Position", "Start Date", "Attendance", "Performance", "Leaves"])
|
11 |
self.company_policies = "Employees are entitled to 24 annual leaves and must adhere to company policies regarding attendance and punctuality."
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def screen_resume(self, resume_text, job_description):
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def onboarding_guide(self, employee_name, position):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def add_employee(self, name, position, start_date):
|
21 |
new_employee = {
|
@@ -64,23 +98,28 @@ class AIHRAgent:
|
|
64 |
return f"Exit interview recorded for {employee_name}. Feedback: {feedback}"
|
65 |
return f"Employee {employee_name} not found."
|
66 |
|
|
|
67 |
ai_hr = AIHRAgent()
|
68 |
|
|
|
69 |
def gradio_interface():
|
70 |
with gr.Blocks() as interface:
|
71 |
-
gr.Markdown("# **AI HR Agent**")
|
72 |
-
gr.Markdown("
|
73 |
|
74 |
with gr.Tab("Recruitment and Onboarding"):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
84 |
|
85 |
with gr.Tab("Employee Management"):
|
86 |
add_name = gr.Textbox(label="Employee Name")
|
@@ -99,42 +138,26 @@ def gradio_interface():
|
|
99 |
payroll_output = gr.Textbox(label="Payroll Result")
|
100 |
payroll_button = gr.Button("Process Payroll")
|
101 |
|
102 |
-
with gr.Tab("Employee Engagement"):
|
103 |
-
pulse_output = gr.Textbox(label="Pulse Survey")
|
104 |
-
pulse_button = gr.Button("Get Pulse Survey")
|
105 |
-
|
106 |
-
feedback_scores = gr.Textbox(label="Feedback Scores (comma-separated)")
|
107 |
-
feedback_output = gr.Textbox(label="Feedback Analysis Result")
|
108 |
-
feedback_button = gr.Button("Analyze Feedback")
|
109 |
-
|
110 |
-
with gr.Tab("Performance Management"):
|
111 |
-
review_name = gr.Textbox(label="Employee Name")
|
112 |
-
review_score = gr.Number(label="Review Score")
|
113 |
-
review_output = gr.Textbox(label="Review Result")
|
114 |
-
review_button = gr.Button("Update Performance Review")
|
115 |
-
|
116 |
-
with gr.Tab("Compliance and Policy Management"):
|
117 |
-
policy_output = gr.Textbox(label="Company Policies")
|
118 |
-
policy_button = gr.Button("View Policies")
|
119 |
-
|
120 |
with gr.Tab("Exit Management"):
|
121 |
exit_name = gr.Textbox(label="Employee Name")
|
122 |
exit_feedback = gr.Textbox(label="Exit Feedback")
|
123 |
exit_output = gr.Textbox(label="Exit Interview Result")
|
124 |
exit_button = gr.Button("Record Exit Interview")
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
127 |
onboarding_button.click(ai_hr.onboarding_guide, inputs=[onboarding_name, onboarding_position], outputs=onboarding_output)
|
128 |
add_button.click(ai_hr.add_employee, inputs=[add_name, add_position, add_start_date], outputs=add_output)
|
129 |
attendance_button.click(ai_hr.track_attendance, inputs=attendance_name, outputs=attendance_output)
|
130 |
payroll_button.click(ai_hr.process_payroll, inputs=[payroll_name, payroll_salary], outputs=payroll_output)
|
131 |
-
pulse_button.click(lambda: ai_hr.pulse_survey(), outputs=pulse_output)
|
132 |
-
feedback_button.click(lambda scores: ai_hr.feedback_analysis(list(map(int, scores.split(',')))), inputs=feedback_scores, outputs=feedback_output)
|
133 |
-
review_button.click(ai_hr.performance_review, inputs=[review_name, review_score], outputs=review_output)
|
134 |
-
policy_button.click(lambda: ai_hr.get_policy(), outputs=policy_output)
|
135 |
exit_button.click(ai_hr.exit_interview, inputs=[exit_name, exit_feedback], outputs=exit_output)
|
136 |
|
137 |
return interface
|
138 |
|
|
|
139 |
interface = gradio_interface()
|
140 |
interface.launch(share=True)
|
|
|
2 |
import pandas as pd
|
3 |
import datetime
|
4 |
import numpy as np
|
5 |
+
import docx
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
|
9 |
class AIHRAgent:
|
10 |
def __init__(self):
|
11 |
+
# Advanced model for semantic similarity
|
12 |
+
self.resume_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
13 |
self.employee_records = pd.DataFrame(columns=["Name", "Position", "Start Date", "Attendance", "Performance", "Leaves"])
|
14 |
self.company_policies = "Employees are entitled to 24 annual leaves and must adhere to company policies regarding attendance and punctuality."
|
15 |
|
16 |
+
def extract_text_from_file(self, file_path):
|
17 |
+
"""Extract text from uploaded file (PDF or DOCX)."""
|
18 |
+
try:
|
19 |
+
if file_path.name.endswith(".pdf"):
|
20 |
+
pdf_reader = PdfReader(file_path)
|
21 |
+
text = " ".join(page.extract_text() for page in pdf_reader.pages if page.extract_text())
|
22 |
+
elif file_path.name.endswith(".docx"):
|
23 |
+
doc = docx.Document(file_path)
|
24 |
+
text = " ".join(paragraph.text for paragraph in doc.paragraphs)
|
25 |
+
else:
|
26 |
+
raise ValueError("Unsupported file format. Please upload a PDF or DOCX file.")
|
27 |
+
return text
|
28 |
+
except Exception as e:
|
29 |
+
return f"Error extracting text from file: {e}"
|
30 |
+
|
31 |
def screen_resume(self, resume_text, job_description):
|
32 |
+
"""Advanced resume screening using sentence embeddings."""
|
33 |
+
try:
|
34 |
+
if not resume_text or not job_description:
|
35 |
+
return "Please provide both the resume text and job description."
|
36 |
+
|
37 |
+
# Semantic similarity scoring
|
38 |
+
job_embedding = self.resume_model.encode(job_description, convert_to_tensor=True)
|
39 |
+
resume_embedding = self.resume_model.encode(resume_text, convert_to_tensor=True)
|
40 |
+
similarity = util.pytorch_cos_sim(job_embedding, resume_embedding).item()
|
41 |
+
return f"Relevance Score: {similarity:.2f} for the position of {job_description}."
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error during resume screening: {e}"
|
44 |
|
45 |
def onboarding_guide(self, employee_name, position):
|
46 |
+
"""Automated onboarding guide generation."""
|
47 |
+
return (f"Welcome {employee_name}!\n"
|
48 |
+
f"As a {position}, your onboarding plan includes:\n"
|
49 |
+
f"1. Orientation session.\n"
|
50 |
+
f"2. Team introductions.\n"
|
51 |
+
f"3. Work system setup.\n"
|
52 |
+
f"4. Initial training and goal setting.")
|
53 |
|
54 |
def add_employee(self, name, position, start_date):
|
55 |
new_employee = {
|
|
|
98 |
return f"Exit interview recorded for {employee_name}. Feedback: {feedback}"
|
99 |
return f"Employee {employee_name} not found."
|
100 |
|
101 |
+
# AI HR Agent Instance
|
102 |
ai_hr = AIHRAgent()
|
103 |
|
104 |
+
# Gradio Interface
|
105 |
def gradio_interface():
|
106 |
with gr.Blocks() as interface:
|
107 |
+
gr.Markdown("# **Advanced AI HR Agent**")
|
108 |
+
gr.Markdown("This AI automates all HR tasks and provides advanced features such as resume screening and policy management.")
|
109 |
|
110 |
with gr.Tab("Recruitment and Onboarding"):
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
resume_upload = gr.File(label="Upload Resume (PDF/DOCX)")
|
114 |
+
job_description_input = gr.Textbox(label="Job Description")
|
115 |
+
resume_screen_output = gr.Textbox(label="Screening Result")
|
116 |
+
screen_button = gr.Button("Screen Resume")
|
117 |
+
|
118 |
+
with gr.Column():
|
119 |
+
onboarding_name = gr.Textbox(label="Employee Name")
|
120 |
+
onboarding_position = gr.Textbox(label="Position")
|
121 |
+
onboarding_output = gr.Textbox(label="Onboarding Guide")
|
122 |
+
onboarding_button = gr.Button("Generate Onboarding Guide")
|
123 |
|
124 |
with gr.Tab("Employee Management"):
|
125 |
add_name = gr.Textbox(label="Employee Name")
|
|
|
138 |
payroll_output = gr.Textbox(label="Payroll Result")
|
139 |
payroll_button = gr.Button("Process Payroll")
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
with gr.Tab("Exit Management"):
|
142 |
exit_name = gr.Textbox(label="Employee Name")
|
143 |
exit_feedback = gr.Textbox(label="Exit Feedback")
|
144 |
exit_output = gr.Textbox(label="Exit Interview Result")
|
145 |
exit_button = gr.Button("Record Exit Interview")
|
146 |
|
147 |
+
# Button Actions
|
148 |
+
screen_button.click(
|
149 |
+
lambda file, job_desc: ai_hr.screen_resume(ai_hr.extract_text_from_file(file), job_desc) if file else "No resume file uploaded.",
|
150 |
+
inputs=[resume_upload, job_description_input],
|
151 |
+
outputs=resume_screen_output,
|
152 |
+
)
|
153 |
onboarding_button.click(ai_hr.onboarding_guide, inputs=[onboarding_name, onboarding_position], outputs=onboarding_output)
|
154 |
add_button.click(ai_hr.add_employee, inputs=[add_name, add_position, add_start_date], outputs=add_output)
|
155 |
attendance_button.click(ai_hr.track_attendance, inputs=attendance_name, outputs=attendance_output)
|
156 |
payroll_button.click(ai_hr.process_payroll, inputs=[payroll_name, payroll_salary], outputs=payroll_output)
|
|
|
|
|
|
|
|
|
157 |
exit_button.click(ai_hr.exit_interview, inputs=[exit_name, exit_feedback], outputs=exit_output)
|
158 |
|
159 |
return interface
|
160 |
|
161 |
+
# Launch Interface
|
162 |
interface = gradio_interface()
|
163 |
interface.launch(share=True)
|