Spaces:
Running
on
Zero
Running
on
Zero
# Plug&Play Feature Injection | |
import torch | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
from random import randrange | |
import PIL | |
import numpy as np | |
from tqdm import tqdm | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
import torch.nn.functional as F | |
from diffusers import ( | |
StableDiffusionXLPipeline, | |
StableDiffusionXLImg2ImgPipeline, | |
DDIMScheduler, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import ( | |
rescale_noise_cfg, | |
StableDiffusionXLPipelineOutput, | |
retrieve_timesteps, | |
PipelineImageInput | |
) | |
from src.eunms import Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type | |
from src.inversion_utils import noise_regularization | |
def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt): | |
""" | |
let a = alpha_t, b = alpha_{t - 1} | |
We have a > b, | |
x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1}) | |
From https://arxiv.org/pdf/2105.05233.pdf, section F. | |
""" | |
a, b = alpha_t, alpha_tm1 | |
sa = a**0.5 | |
sb = b**0.5 | |
return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt) | |
class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline): | |
# @torch.no_grad() | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
image: PipelineImageInput = None, | |
strength: float = 0.3, | |
num_inversion_steps: int = 50, | |
timesteps: List[int] = None, | |
denoising_start: Optional[float] = None, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 1.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Tuple[int, int] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Tuple[int, int] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
aesthetic_score: float = 6.0, | |
negative_aesthetic_score: float = 2.5, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
opt_lr: float = 0.001, | |
opt_iters: int = 1, | |
opt_none_inference_steps: bool = False, | |
opt_loss_kl_lambda: float = 10.0, | |
num_inference_steps: int = 50, | |
num_aprox_steps: int = 100, | |
**kwargs, | |
): | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
strength, | |
num_inversion_steps, | |
callback_steps, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
denoising_start_fr = 1.0 - denoising_start | |
denoising_start = 0.0 if self.cfg.noise_friendly_inversion else denoising_start | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._denoising_end = denoising_end | |
self._denoising_start = denoising_start | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# 4. Preprocess image | |
image = self.image_processor.preprocess(image) | |
# 5. Prepare timesteps | |
def denoising_value_valid(dnv): | |
return isinstance(self.denoising_end, float) and 0 < dnv < 1 | |
timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps) | |
timesteps_num_inference_steps, num_inference_steps = retrieve_timesteps(self.scheduler_inference, num_inference_steps, device, None) | |
timesteps, num_inversion_steps = self.get_timesteps( | |
num_inversion_steps, | |
strength, | |
device, | |
denoising_start=self.denoising_start if denoising_value_valid else None, | |
) | |
# latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# add_noise = True if self.denoising_start is None else False | |
# 6. Prepare latent variables | |
with torch.no_grad(): | |
latents = self.prepare_latents( | |
image, | |
None, | |
batch_size, | |
num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
False, | |
) | |
# 7. Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
height, width = latents.shape[-2:] | |
height = height * self.vae_scale_factor | |
width = width * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 8. Prepare added time ids & embeddings | |
if negative_original_size is None: | |
negative_original_size = original_size | |
if negative_target_size is None: | |
negative_target_size = target_size | |
add_text_embeds = pooled_prompt_embeds | |
if self.text_encoder_2 is None: | |
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
else: | |
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
add_time_ids, add_neg_time_ids = self._get_add_time_ids( | |
original_size, | |
crops_coords_top_left, | |
target_size, | |
aesthetic_score, | |
negative_aesthetic_score, | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device) | |
if ip_adapter_image is not None: | |
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt) | |
if self.do_classifier_free_guidance: | |
image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
image_embeds = image_embeds.to(device) | |
# 9. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inversion_steps * self.scheduler.order, 0) | |
prev_timestep = None | |
self._num_timesteps = len(timesteps) | |
self.prev_z = torch.clone(latents) | |
self.prev_z4 = torch.clone(latents) | |
self.z_0 = torch.clone(latents) | |
g_cpu = torch.Generator().manual_seed(7865) | |
self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype) | |
# Friendly inversion params | |
timesteps_for = timesteps if self.cfg.noise_friendly_inversion else reversed(timesteps) | |
noise = randn_tensor(latents.shape, generator=g_cpu, device=latents.device, dtype=latents.dtype) | |
latents = self.scheduler.add_noise(self.z_0, noise, timesteps_for[0].view((1))).detach() if self.cfg.noise_friendly_inversion else latents | |
z_T = latents.clone() | |
all_latents = [latents.clone()] | |
with self.progress_bar(total=num_inversion_steps) as progress_bar: | |
for i, t in enumerate(timesteps_for): | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
if ip_adapter_image is not None: | |
added_cond_kwargs["image_embeds"] = image_embeds | |
z_tp1 = self.inversion_step(latents, | |
t, | |
prompt_embeds, | |
added_cond_kwargs, | |
prev_timestep=prev_timestep, | |
num_aprox_steps=num_aprox_steps) | |
prev_timestep = t | |
latents = z_tp1 | |
all_latents.append(latents.clone()) | |
if self.cfg.noise_friendly_inversion and t.item() > 1000 * denoising_start_fr: | |
z_T = latents.clone() | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
negative_pooled_prompt_embeds = callback_outputs.pop( | |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
) | |
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if self.cfg.noise_friendly_inversion: | |
latents = z_T | |
image = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
return StableDiffusionXLPipelineOutput(images=image), all_latents | |
# @torch.no_grad() | |
def inversion_step( | |
self, | |
z_t: torch.tensor, | |
t: torch.tensor, | |
prompt_embeds, | |
added_cond_kwargs, | |
prev_timestep: Optional[torch.tensor] = None, | |
num_aprox_steps: int = 100 | |
) -> torch.tensor: | |
extra_step_kwargs = {} | |
avg_range = self.cfg.gradient_averaging_first_step_range if t.item() < 250 else self.cfg.gradient_averaging_step_range | |
num_aprox_steps = min(self.cfg.max_num_aprox_steps_first_step, num_aprox_steps) if t.item() < 250 else num_aprox_steps | |
nosie_pred_avg = None | |
z_tp1_forward = self.scheduler.add_noise(self.z_0, self.noise, t.view((1))).detach() | |
noise_pred_optimal = None | |
approximated_z_tp1 = z_t.clone() | |
for i in range(num_aprox_steps + 1): | |
with torch.no_grad(): | |
if self.cfg.num_reg_steps > 0 and i == 0: | |
approximated_z_tp1 = torch.cat([z_tp1_forward, approximated_z_tp1]) | |
prompt_embeds_in = torch.cat([prompt_embeds, prompt_embeds]) | |
added_cond_kwargs_in = {} | |
added_cond_kwargs_in['text_embeds'] = torch.cat([added_cond_kwargs['text_embeds'], added_cond_kwargs['text_embeds']]) | |
added_cond_kwargs_in['time_ids'] = torch.cat([added_cond_kwargs['time_ids'], added_cond_kwargs['time_ids']]) | |
else: | |
prompt_embeds_in = prompt_embeds | |
added_cond_kwargs_in = added_cond_kwargs | |
noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds_in, added_cond_kwargs_in) | |
if self.cfg.num_reg_steps > 0 and i == 0: | |
noise_pred_optimal, noise_pred = noise_pred.chunk(2) | |
noise_pred_optimal = noise_pred_optimal.detach() | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# Calculate average noise | |
if i >= avg_range[0] and i < avg_range[1]: | |
j = i - avg_range[0] | |
if nosie_pred_avg is None: | |
nosie_pred_avg = noise_pred.clone() | |
else: | |
nosie_pred_avg = j * nosie_pred_avg / (j + 1) + noise_pred / (j + 1) | |
if i >= avg_range[0] or (self.cfg.gradient_averaging_type == Gradient_Averaging_Type.NONE and i > 0): | |
noise_pred = noise_regularization(noise_pred, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls) | |
approximated_z_tp1 = self.backward_step(noise_pred, t, z_t, prev_timestep) | |
if self.cfg.gradient_averaging_type == Gradient_Averaging_Type.ON_END and nosie_pred_avg is not None: | |
nosie_pred_avg = noise_regularization(nosie_pred_avg, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls) | |
approximated_z_tp1 = self.backward_step(nosie_pred_avg, t, z_t, prev_timestep) | |
if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE: | |
noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds, added_cond_kwargs) | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
self.scheduler.step_and_update_noise(noise_pred, t, approximated_z_tp1, z_t, return_dict=False, update_epsilon_type=self.cfg.update_epsilon_type) | |
return approximated_z_tp1 | |
def unet_pass(self, z_t, t, prompt_embeds, added_cond_kwargs): | |
latent_model_input = torch.cat([z_t] * 2) if self.do_classifier_free_guidance else z_t | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
return self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=None, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
def backward_step(self, nosie_pred, t, z_t, prev_timestep): | |
extra_step_kwargs = {} | |
if self.cfg.scheduler_type == Scheduler_Type.EULER or self.cfg.scheduler_type == Scheduler_Type.LCM: | |
return self.scheduler.inv_step(nosie_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach() | |
else: | |
alpha_prod_t = self.scheduler.alphas_cumprod[t] | |
alpha_prod_t_prev = ( | |
self.scheduler.alphas_cumprod[prev_timestep] | |
if prev_timestep is not None | |
else self.scheduler.final_alpha_cumprod | |
) | |
return _backward_ddim( | |
x_tm1=z_t, | |
alpha_t=alpha_prod_t, | |
alpha_tm1=alpha_prod_t_prev, | |
eps_xt=nosie_pred, | |
) | |