ReNoise-Inversion / src /sdxl_inversion_pipeline.py
garibida's picture
Upload Files
d65c9b3
# Plug&Play Feature Injection
import torch
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from random import randrange
import PIL
import numpy as np
from tqdm import tqdm
from torch.cuda.amp import custom_bwd, custom_fwd
import torch.nn.functional as F
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
DDIMScheduler,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
rescale_noise_cfg,
StableDiffusionXLPipelineOutput,
retrieve_timesteps,
PipelineImageInput
)
from src.eunms import Scheduler_Type, Gradient_Averaging_Type, Epsilon_Update_Type
from src.inversion_utils import noise_regularization
def _backward_ddim(x_tm1, alpha_t, alpha_tm1, eps_xt):
"""
let a = alpha_t, b = alpha_{t - 1}
We have a > b,
x_{t} - x_{t - 1} = sqrt(a) ((sqrt(1/b) - sqrt(1/a)) * x_{t-1} + (sqrt(1/a - 1) - sqrt(1/b - 1)) * eps_{t-1})
From https://arxiv.org/pdf/2105.05233.pdf, section F.
"""
a, b = alpha_t, alpha_tm1
sa = a**0.5
sb = b**0.5
return sa * ((1 / sb) * x_tm1 + ((1 / a - 1) ** 0.5 - (1 / b - 1) ** 0.5) * eps_xt)
class SDXLDDIMPipeline(StableDiffusionXLImg2ImgPipeline):
# @torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
strength: float = 0.3,
num_inversion_steps: int = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
aesthetic_score: float = 6.0,
negative_aesthetic_score: float = 2.5,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
opt_lr: float = 0.001,
opt_iters: int = 1,
opt_none_inference_steps: bool = False,
opt_loss_kl_lambda: float = 10.0,
num_inference_steps: int = 50,
num_aprox_steps: int = 100,
**kwargs,
):
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
strength,
num_inversion_steps,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
denoising_start_fr = 1.0 - denoising_start
denoising_start = 0.0 if self.cfg.noise_friendly_inversion else denoising_start
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._denoising_start = denoising_start
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# 4. Preprocess image
image = self.image_processor.preprocess(image)
# 5. Prepare timesteps
def denoising_value_valid(dnv):
return isinstance(self.denoising_end, float) and 0 < dnv < 1
timesteps, num_inversion_steps = retrieve_timesteps(self.scheduler, num_inversion_steps, device, timesteps)
timesteps_num_inference_steps, num_inference_steps = retrieve_timesteps(self.scheduler_inference, num_inference_steps, device, None)
timesteps, num_inversion_steps = self.get_timesteps(
num_inversion_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid else None,
)
# latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# add_noise = True if self.denoising_start is None else False
# 6. Prepare latent variables
with torch.no_grad():
latents = self.prepare_latents(
image,
None,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
False,
)
# 7. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
height, width = latents.shape[-2:]
height = height * self.vae_scale_factor
width = width * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 8. Prepare added time ids & embeddings
if negative_original_size is None:
negative_original_size = original_size
if negative_target_size is None:
negative_target_size = target_size
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device)
if ip_adapter_image is not None:
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
image_embeds = image_embeds.to(device)
# 9. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inversion_steps * self.scheduler.order, 0)
prev_timestep = None
self._num_timesteps = len(timesteps)
self.prev_z = torch.clone(latents)
self.prev_z4 = torch.clone(latents)
self.z_0 = torch.clone(latents)
g_cpu = torch.Generator().manual_seed(7865)
self.noise = randn_tensor(self.z_0.shape, generator=g_cpu, device=self.z_0.device, dtype=self.z_0.dtype)
# Friendly inversion params
timesteps_for = timesteps if self.cfg.noise_friendly_inversion else reversed(timesteps)
noise = randn_tensor(latents.shape, generator=g_cpu, device=latents.device, dtype=latents.dtype)
latents = self.scheduler.add_noise(self.z_0, noise, timesteps_for[0].view((1))).detach() if self.cfg.noise_friendly_inversion else latents
z_T = latents.clone()
all_latents = [latents.clone()]
with self.progress_bar(total=num_inversion_steps) as progress_bar:
for i, t in enumerate(timesteps_for):
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
if ip_adapter_image is not None:
added_cond_kwargs["image_embeds"] = image_embeds
z_tp1 = self.inversion_step(latents,
t,
prompt_embeds,
added_cond_kwargs,
prev_timestep=prev_timestep,
num_aprox_steps=num_aprox_steps)
prev_timestep = t
latents = z_tp1
all_latents.append(latents.clone())
if self.cfg.noise_friendly_inversion and t.item() > 1000 * denoising_start_fr:
z_T = latents.clone()
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if self.cfg.noise_friendly_inversion:
latents = z_T
image = latents
# Offload all models
self.maybe_free_model_hooks()
return StableDiffusionXLPipelineOutput(images=image), all_latents
# @torch.no_grad()
def inversion_step(
self,
z_t: torch.tensor,
t: torch.tensor,
prompt_embeds,
added_cond_kwargs,
prev_timestep: Optional[torch.tensor] = None,
num_aprox_steps: int = 100
) -> torch.tensor:
extra_step_kwargs = {}
avg_range = self.cfg.gradient_averaging_first_step_range if t.item() < 250 else self.cfg.gradient_averaging_step_range
num_aprox_steps = min(self.cfg.max_num_aprox_steps_first_step, num_aprox_steps) if t.item() < 250 else num_aprox_steps
nosie_pred_avg = None
z_tp1_forward = self.scheduler.add_noise(self.z_0, self.noise, t.view((1))).detach()
noise_pred_optimal = None
approximated_z_tp1 = z_t.clone()
for i in range(num_aprox_steps + 1):
with torch.no_grad():
if self.cfg.num_reg_steps > 0 and i == 0:
approximated_z_tp1 = torch.cat([z_tp1_forward, approximated_z_tp1])
prompt_embeds_in = torch.cat([prompt_embeds, prompt_embeds])
added_cond_kwargs_in = {}
added_cond_kwargs_in['text_embeds'] = torch.cat([added_cond_kwargs['text_embeds'], added_cond_kwargs['text_embeds']])
added_cond_kwargs_in['time_ids'] = torch.cat([added_cond_kwargs['time_ids'], added_cond_kwargs['time_ids']])
else:
prompt_embeds_in = prompt_embeds
added_cond_kwargs_in = added_cond_kwargs
noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds_in, added_cond_kwargs_in)
if self.cfg.num_reg_steps > 0 and i == 0:
noise_pred_optimal, noise_pred = noise_pred.chunk(2)
noise_pred_optimal = noise_pred_optimal.detach()
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# Calculate average noise
if i >= avg_range[0] and i < avg_range[1]:
j = i - avg_range[0]
if nosie_pred_avg is None:
nosie_pred_avg = noise_pred.clone()
else:
nosie_pred_avg = j * nosie_pred_avg / (j + 1) + noise_pred / (j + 1)
if i >= avg_range[0] or (self.cfg.gradient_averaging_type == Gradient_Averaging_Type.NONE and i > 0):
noise_pred = noise_regularization(noise_pred, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls)
approximated_z_tp1 = self.backward_step(noise_pred, t, z_t, prev_timestep)
if self.cfg.gradient_averaging_type == Gradient_Averaging_Type.ON_END and nosie_pred_avg is not None:
nosie_pred_avg = noise_regularization(nosie_pred_avg, noise_pred_optimal, lambda_kl=self.cfg.lambda_kl, lambda_ac=self.cfg.lambda_ac, num_reg_steps=self.cfg.num_reg_steps, num_ac_rolls=self.cfg.num_ac_rolls)
approximated_z_tp1 = self.backward_step(nosie_pred_avg, t, z_t, prev_timestep)
if self.cfg.update_epsilon_type != Epsilon_Update_Type.NONE:
noise_pred = self.unet_pass(approximated_z_tp1, t, prompt_embeds, added_cond_kwargs)
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
self.scheduler.step_and_update_noise(noise_pred, t, approximated_z_tp1, z_t, return_dict=False, update_epsilon_type=self.cfg.update_epsilon_type)
return approximated_z_tp1
@torch.no_grad()
def unet_pass(self, z_t, t, prompt_embeds, added_cond_kwargs):
latent_model_input = torch.cat([z_t] * 2) if self.do_classifier_free_guidance else z_t
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
return self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=None,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
@torch.no_grad()
def backward_step(self, nosie_pred, t, z_t, prev_timestep):
extra_step_kwargs = {}
if self.cfg.scheduler_type == Scheduler_Type.EULER or self.cfg.scheduler_type == Scheduler_Type.LCM:
return self.scheduler.inv_step(nosie_pred, t, z_t, **extra_step_kwargs, return_dict=False)[0].detach()
else:
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep is not None
else self.scheduler.final_alpha_cumprod
)
return _backward_ddim(
x_tm1=z_t,
alpha_t=alpha_prod_t,
alpha_tm1=alpha_prod_t_prev,
eps_xt=nosie_pred,
)