File size: 2,704 Bytes
d65c9b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from random import randrange
import torch.nn.functional as F


def noise_regularization(
    e_t, noise_pred_optimal, lambda_kl, lambda_ac, num_reg_steps, num_ac_rolls
):
    for _outer in range(num_reg_steps):
        if lambda_kl > 0:
            _var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True)
            l_kld = patchify_latents_kl_divergence(_var, noise_pred_optimal)
            l_kld.backward()
            _grad = _var.grad.detach()
            _grad = torch.clip(_grad, -100, 100)
            e_t = e_t - lambda_kl * _grad
        if lambda_ac > 0:
            for _inner in range(num_ac_rolls):
                _var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True)
                l_ac = auto_corr_loss(_var)
                l_ac.backward()
                _grad = _var.grad.detach() / num_ac_rolls
                e_t = e_t - lambda_ac * _grad
        e_t = e_t.detach()

    return e_t


def auto_corr_loss(x, random_shift=True):
    B, C, H, W = x.shape
    assert B == 1
    x = x.squeeze(0)
    # x must be shape [C,H,W] now
    reg_loss = 0.0
    for ch_idx in range(x.shape[0]):
        noise = x[ch_idx][None, None, :, :]
        while True:
            if random_shift:
                roll_amount = randrange(noise.shape[2] // 2)
            else:
                roll_amount = 1
            reg_loss += (
                noise * torch.roll(noise, shifts=roll_amount, dims=2)
            ).mean() ** 2
            reg_loss += (
                noise * torch.roll(noise, shifts=roll_amount, dims=3)
            ).mean() ** 2
            if noise.shape[2] <= 8:
                break
            noise = F.avg_pool2d(noise, kernel_size=2)
    return reg_loss


def patchify_latents_kl_divergence(x0, x1, patch_size=4, num_channels=4):

    def patchify_tensor(input_tensor):
        patches = (
            input_tensor.unfold(1, patch_size, patch_size)
            .unfold(2, patch_size, patch_size)
            .unfold(3, patch_size, patch_size)
        )
        patches = patches.contiguous().view(-1, num_channels, patch_size, patch_size)
        return patches

    x0 = patchify_tensor(x0)
    x1 = patchify_tensor(x1)

    kl = latents_kl_divergence(x0, x1).sum()
    return kl


def latents_kl_divergence(x0, x1):
    EPSILON = 1e-6
    x0 = x0.view(x0.shape[0], x0.shape[1], -1)
    x1 = x1.view(x1.shape[0], x1.shape[1], -1)
    mu0 = x0.mean(dim=-1)
    mu1 = x1.mean(dim=-1)
    var0 = x0.var(dim=-1)
    var1 = x1.var(dim=-1)
    kl = (
        torch.log((var1 + EPSILON) / (var0 + EPSILON))
        + (var0 + (mu0 - mu1) ** 2) / (var1 + EPSILON)
        - 1
    )
    kl = torch.abs(kl).sum(dim=-1)
    return kl