|
import os |
|
import torch |
|
import spaces |
|
import gradio as gr |
|
from transformers import GemmaTokenizer, AutoModelForCausalLM |
|
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextIteratorStreamer |
|
from threading import Thread |
|
import subprocess |
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
token = os.getenv('HUGGINGFACE_TOKEN') |
|
|
|
model_path= "CubeAI/Zhuji-Internet-Literature-Intelligent-Writing-Model-V1.0" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, encode_special_tokens=True, token=token) |
|
model= AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype= torch.bfloat16, |
|
low_cpu_mem_usage= True, |
|
token=token, |
|
attn_implementation="flash_attention_2", |
|
device_map= "auto" |
|
) |
|
|
|
|
|
model = torch.compile(model) |
|
|
|
model = model.eval() |
|
|
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">网文智能辅助写作 - 珠玑系列模型</h1> |
|
<p>我们自主研发的珠玑系列智能写作模型,专为网文创作与理解而生。基于丰富的网文场景数据,包括续写、扩写、取名等创作任务和章纲抽取等理解任务,我们训练了一系列模型参数,覆盖1B至14B不等的模型族,包括生成模型和embedding模型。</p> |
|
<p>📚 <strong>基础版模型:</strong>适合初次尝试智能写作的用户,提供长篇小说创作的基础功能,助您轻松迈入智能写作的新纪元。</p> |
|
<p>🚀 <strong>高级版模型:</strong>为追求更高层次创作体验的用户设计,配备更先进的文本生成技术和更精细的理解能力,让您的创作更具深度和创新。</p> |
|
<p>珠玑系列模型(Zhuji-Internet-Literature-Intelligent-Writing-Model-V1.0)现已发布,包括1B、7B、14B规模的模型,基于Qwen1.5架构,旨在为您提供卓越的网文智能写作体验。</p> |
|
</div> |
|
|
|
''' |
|
|
|
LICENSE = """ |
|
<p/> |
|
--- |
|
Built with NovelGen |
|
""" |
|
|
|
PLACEHOLDER = """ |
|
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> |
|
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ai助力写作</h1> |
|
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ai辅助写作</p> |
|
</div> |
|
""" |
|
|
|
|
|
css = """ |
|
h1 { |
|
text-align: center; |
|
display: block; |
|
} |
|
#duplicate-button { |
|
margin: auto; |
|
color: white; |
|
background: #1565c0; |
|
border-radius: 100vh; |
|
} |
|
""" |
|
tokenizer.chat_template = """{% for message in messages %} |
|
{% if message['role'] == 'user' %} |
|
{{'<|user|>'+ message['content'].strip() + '<|observation|>'+ '<|assistant|>'}} |
|
{% elif message['role'] == 'system' %} |
|
{{ '<|system|>' + message['content'].strip() + '<|observation|>'}} |
|
{% elif message['role'] == 'assistant' %} |
|
{{ message['content'] + '<|observation|>'}} |
|
{% endif %} |
|
{% endfor %}""".replace("\n", "").replace(" ", "") |
|
|
|
@spaces.GPU(duration=40) |
|
def chat_zhuji( |
|
message: str, |
|
history: list, |
|
temperature: float, |
|
max_new_tokens: int |
|
) -> str: |
|
""" |
|
Generate a streaming response using the llama3-8b model. |
|
Args: |
|
message (str): The input message. |
|
history (list): The conversation history used by ChatInterface. |
|
temperature (float): The temperature for generating the response. |
|
max_new_tokens (int): The maximum number of new tokens to generate. |
|
Returns: |
|
str: The generated response. |
|
""" |
|
conversation = [] |
|
for user, assistant in history: |
|
conversation.extend([{"role": "system","content": "",},{"role": "user", "content": user}, {"role": "<|assistant|>", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
input_ids= input_ids, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
penalty_alpha= 0.65, |
|
top_p= 0.90, |
|
top_k= 35, |
|
use_cache= True, |
|
eos_token_id= tokenizer.encode("<|observation|>",add_special_tokens= False), |
|
temperature=temperature, |
|
) |
|
|
|
if temperature == 0: |
|
generate_kwargs['do_sample'] = False |
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
|
|
|
|
|
|
|
|
|
|
partial_message = "" |
|
for new_token in streamer: |
|
if new_token != '<|observation|>': |
|
partial_message += new_token |
|
yield partial_message |
|
|
|
|
|
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') |
|
text_box= gr.Textbox(show_copy_button= True) |
|
with gr.Blocks(fill_height=True, css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=chat_zhuji, |
|
chatbot=chatbot, |
|
textbox= text_box, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.95, |
|
label="Temperature", |
|
render=False), |
|
gr.Slider(minimum=128, |
|
maximum=8192*2, |
|
step=1, |
|
value=8192, |
|
label="Max new tokens", |
|
render=False ), |
|
], |
|
examples=[ |
|
['请给一个古代美女的外貌来一段描写'], |
|
['请生成4个东方神功的招式名称'], |
|
['生成一段官军和倭寇打斗的场面描写'], |
|
['生成一个都市大女主的角色档案'], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.launch( |
|
|
|
|
|
|
|
|
|
) |