File size: 6,553 Bytes
7cdd946 4272568 ad5a269 4272568 7cdd946 4272568 7cdd946 c10c1fc 4272568 ad5a269 4272568 ad5a269 4272568 ad5a269 4272568 a30960f 4272568 ad5a269 4272568 a30960f 4272568 a30960f 4272568 ad5a269 4272568 ad5a269 4272568 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import torch
import gradio as gr
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
token = os.getenv('HUGGINGFACE_TOKEN')
model_path= "CubeAI/Zhuji-Internet-Literature-Intelligent-Writing-Model-V1.0"
tokenizer = AutoTokenizer.from_pretrained(model_path, encode_special_tokens=True, token=token)
model= AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype= torch.bfloat16,
low_cpu_mem_usage= True,
token=token,
#attn_implementation="flash_attention_2",
device_map= "auto"
)
model = torch.compile(model)
model = model.eval()
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">网文智能辅助写作 - 珠玑系列模型</h1>
<p>我们自主研发的珠玑系列智能写作模型,专为网文创作与理解而生。基于丰富的网文场景数据,包括续写、扩写、取名等创作任务和章纲抽取等理解任务,我们训练了一系列模型参数,覆盖1B至14B不等的模型族,包括生成模型和embedding模型。</p>
<p>📚 <strong>基础版模型:</strong>适合初次尝试智能写作的用户,提供长篇小说创作的基础功能,助您轻松迈入智能写作的新纪元。</p>
<p>🚀 <strong>高级版模型:</strong>为追求更高层次创作体验的用户设计,配备更先进的文本生成技术和更精细的理解能力,让您的创作更具深度和创新。</p>
<p>珠玑系列模型(Zhuji-Internet-Literature-Intelligent-Writing-Model-V1.0)现已发布,包括1B、7B、14B规模的模型,基于Qwen1.5架构,旨在为您提供卓越的网文智能写作体验。</p>
</div>
'''
LICENSE = """
<p/>
---
Built with NovelGen
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ai助力写作</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ai辅助写作</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
tokenizer.chat_template = """{% for message in messages %}
{% if message['role'] == 'user' %}
{{'<|user|>'+ message['content'].strip() + '<|observation|>'+ '<|assistant|>'}}
{% elif message['role'] == 'system' %}
{{ '<|system|>' + message['content'].strip() + '<|observation|>'}}
{% elif message['role'] == 'assistant' %}
{{ message['content'] + '<|observation|>'}}
{% endif %}
{% endfor %}""".replace("\n", "").replace(" ", "")
def chat_zhuji(
message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "system","content": "",},{"role": "user", "content": user}, {"role": "<|assistant|>", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
penalty_alpha= 0.65,
top_p= 0.90,
top_k= 35,
use_cache= True,
eos_token_id= tokenizer.encode("<|observation|>",add_special_tokens= False),
temperature=temperature,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
#outputs = []
#for text in streamer:
# outputs.append(text)
# yield "".join(outputs)
partial_message = ""
for new_token in streamer:
if new_token != '<|observation|>':
partial_message += new_token
yield partial_message
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
text_box= gr.Textbox(show_copy_button= True)
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_zhuji,
chatbot=chatbot,
textbox= text_box,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=8192*2,
step=1,
value=8192,
label="Max new tokens",
render=False ),
],
examples=[
['请给一个古代美女的外貌来一段描写'],
['请生成4个东方神功的招式名称'],
['生成一段官军和倭寇打斗的场面描写'],
['生成一个都市大女主的角色档案'],
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue().launch(
#server_name='0.0.0.0',
#server_port=config.webui_config.port,
#inbrowser=True,
#share=True
) |