File size: 6,724 Bytes
7cdd946
4272568
3445255
ad5a269
 
 
 
5bebd03
ad5a269
5bebd03
ad5a269
 
4272568
 
7cdd946
4272568
 
 
 
7cdd946
5bebd03
 
4272568
 
 
 
 
 
 
 
 
ad5a269
 
 
 
 
4272568
ad5a269
4272568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d811fa8
4272568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bebd03
4272568
ad5a269
4272568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30960f
 
 
 
 
 
 
 
 
 
4272568
 
 
 
ad5a269
 
4272568
 
 
 
 
 
 
 
 
 
 
 
 
a30960f
4272568
 
a30960f
4272568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed44a70
4272568
 
 
ad5a269
4272568
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import torch
import spaces
import gradio as gr
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import subprocess

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Set an environment variable
token = os.getenv('HUGGINGFACE_TOKEN')

model_path= "CubeAI/Zhuji-Internet-Literature-Intelligent-Writing-Model-V1.0"
tokenizer = AutoTokenizer.from_pretrained(model_path, encode_special_tokens=True, token=token)
model= AutoModelForCausalLM.from_pretrained(
                                            model_path,
                                            torch_dtype= torch.bfloat16,
                                            low_cpu_mem_usage= True, 
                                            token=token,
                                            attn_implementation="flash_attention_2",
                                            device_map= "auto"
     )


model = torch.compile(model)
model = model.eval()


DESCRIPTION = '''
<div>
    <h1 style="text-align: center;">网文智能辅助写作 - 珠玑系列模型</h1>
    <p>我们自主研发的珠玑系列智能写作模型,专为网文创作与理解而生。基于丰富的网文场景数据,包括续写、扩写、取名等创作任务和章纲抽取等理解任务,我们训练了一系列模型参数,覆盖1B至14B不等的模型族,包括生成模型和embedding模型。</p>
    <p>📚 <strong>基础版模型:</strong>适合初次尝试智能写作的用户,提供长篇小说创作的基础功能,助您轻松迈入智能写作的新纪元。</p>
    <p>🚀 <strong>高级版模型:</strong>为追求更高层次创作体验的用户设计,配备更先进的文本生成技术和更精细的理解能力,让您的创作更具深度和创新。</p>
    <p>珠玑系列模型(Zhuji-Internet-Literature-Intelligent-Writing-Model-V1.0)现已发布,包括1B、7B、14B规模的模型,基于Qwen1.5架构,旨在为您提供卓越的网文智能写作体验。</p>
</div>

'''

LICENSE = """
<p/>
---
Built with NovelGen
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ai助力写作</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ai辅助写作</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""
tokenizer.chat_template = """{% for message in messages %}
    {% if message['role'] == 'user' %}
        {{'<|user|>'+ message['content'].strip() + '<|observation|>'+ '<|assistant|>'}}
    {% elif message['role'] == 'system' %}
        {{ '<|system|>' + message['content'].strip() + '<|observation|>'}}
    {% elif message['role'] == 'assistant' %}
        {{  message['content'] + '<|observation|>'}}
    {% endif %}
    {% endfor %}""".replace("\n", "").replace("  ", "")

@spaces.GPU(duration=60)
def chat_zhuji(
              message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend([{"role": "system","content": "",},{"role": "user", "content": user}, {"role": "<|assistant|>", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        penalty_alpha= 0.65, 
        top_p= 0.90, 
        top_k= 35, 
        use_cache= True, 
        eos_token_id= tokenizer.encode("<|observation|>",add_special_tokens= False),
        temperature=temperature,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    #outputs = []
    #for text in streamer:
    #    outputs.append(text)
    #    yield "".join(outputs)

    partial_message = ""
    for new_token in streamer:
        if new_token != '<|observation|>':
            partial_message += new_token
            yield partial_message

# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
text_box= gr.Textbox(show_copy_button= True)
with gr.Blocks(fill_height=True, css=css) as demo: 
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_zhuji,
        chatbot=chatbot,
        textbox= text_box,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.95, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=128, 
                      maximum=8192*2,
                      step=1,
                      value=8192, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ['请给一个古代美女的外貌来一段描写'],
            ['请生成4个东方神功的招式名称'],
            ['生成一段官军和倭寇打斗的场面描写'],
            ['生成一个都市大女主的角色档案'],
            ],
        cache_examples=False,
                     )
    
    gr.Markdown(LICENSE)
    
if __name__ == "__main__":
    demo.launch( 
               #server_name='0.0.0.0',
               #server_port=config.webui_config.port, 
               #inbrowser=True, 
               #share=True
            )