File size: 6,102 Bytes
7cdd946
 
 
4272568
 
 
 
7cdd946
4272568
 
 
 
7cdd946
4272568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
token = os.getenv('HUGGINGFACE_TOKEN')

import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

model_path= "CubeAI/Zhuji-Internet-Literature-Intelligent-Writing-Model-V1.0"
tokenizer = AutoTokenizer.from_pretrained(model_path, encode_special_tokens=True, token=token)
model= AutoModelForCausalLM.from_pretrained(
                                            model_path,
                                            torch_dtype= torch.bfloat16,
                                            low_cpu_mem_usage= True, 
                                            token=token,
                                            attn_implementation="flash_attention_2",
                                            device_map= "auto"
     )


model = torch.compile(model)
model = model.eval()

import gradio as gr
import os
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
 


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">自研模型测试长篇小说概要</h1>
<p>本空间旨在展示我们自行研发的模型在长篇小说领域的应用能力。该模型经过特别优化,适用于长篇小说的生成和理解任务,具备两种不同的规模配置:基础版和高级版。</p>
<p>📚 如果您对模型在长篇小说创作和分析方面的应用感兴趣,欢迎尝试使用我们的基础版模型进行初步探索。</p>
<p>🚀 对于寻求更高级功能和更深层次分析的用户,我们提供了高级版模型,它具备更强大的生成能力和更精细的文本理解技术。</p>
</div>
'''

LICENSE = """
<p/>
---
Built with NovelGen
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ai助力写作</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ai辅助写作</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}
#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""
tokenizer.chat_template = """{% for message in messages %}
    {% if message['role'] == 'user' %}
        {{'<|user|>'+ message['content'].strip() + '<|observation|>'+ '<|assistant|>'}}
    {% elif message['role'] == 'system' %}
        {{ '<|system|>' + message['content'].strip() + '<|observation|>'}}
    {% elif message['role'] == 'assistant' %}
        {{  message['content'] + '<|observation|>'}}
    {% endif %}
    {% endfor %}""".replace("\n", "").replace("  ", "")

def chat_zhuji(
              message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    #<|system|><|observation|><|user|>
    for user, assistant in history:
        conversation.extend([{"role": "system","content": "",},{"role": "user", "content": user}, {"role": "<|assistant|>", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        penalty_alpha= 0.65, 
        top_p= 0.90, 
        top_k= 35, 
        use_cache= True, 
        eos_token_id= tokenizer.encode("<|observation|>",add_special_tokens= False),
        temperature=temperature,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
text_box= gr.Textbox(show_copy_button= True)
with gr.Blocks(fill_height=True, css=css) as demo:
    
    #gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_zhuji,
        chatbot=chatbot,
        textbox= text_box,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.95, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=2048, 
                      maximum=8192*2,
                      step=1,
                      value=8192*2, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ['请给一个古代美女的外貌来一段描写'],
            ['请生成4个东方神功的招式名称'],
            ['生成一段官军和倭寇打斗的场面描写'],
            ['生成一个都市大女主的角色档案'],
            ],
        cache_examples=False,
                     )
    
    gr.Markdown(LICENSE)
    
if __name__ == "__main__":
    demo.launch( 
               #server_name='0.0.0.0',
               #server_port=config.webui_config.port, 
               #inbrowser=True, 
               share=True
            )