Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clémentine
commited on
Commit
•
741edbf
1
Parent(s):
5d94f6d
updated app
Browse files- app.py +48 -51
- requirements.txt +1 -1
app.py
CHANGED
@@ -15,34 +15,29 @@ from huggingface_hub import HfApi
|
|
15 |
from scorer import question_scorer
|
16 |
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
17 |
|
18 |
-
BALM_TOKEN = os.environ.get("
|
19 |
|
20 |
OWNER="gaia-benchmark"
|
21 |
DATA_DATASET = f"{OWNER}/GAIA"
|
22 |
-
|
|
|
23 |
RESULTS_DATASET = f"{OWNER}/results"
|
24 |
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
25 |
-
|
26 |
-
SPLIT="validation" #Change to test once we are ready to go
|
27 |
api = HfApi()
|
28 |
|
|
|
|
|
29 |
os.makedirs("scored", exist_ok=True)
|
30 |
|
31 |
# Display the results
|
32 |
-
eval_results =
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
eval_dataframe_1 = pd.DataFrame(eval_results[1].remove_columns("mail"))
|
38 |
-
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
|
39 |
-
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))
|
40 |
|
41 |
# Gold answers
|
42 |
gold_results = {}
|
43 |
-
|
44 |
-
|
45 |
-
gold_results[level] = {row["task_id"]: row["ground_truth"] for row in level_dataset}
|
46 |
|
47 |
|
48 |
def restart_space():
|
@@ -53,14 +48,12 @@ COLS = ["Model", "Score ⬆️", "Organisation"]
|
|
53 |
TYPES = ["str", "number", "str",]
|
54 |
|
55 |
def add_new_eval(
|
56 |
-
|
57 |
model: str,
|
58 |
path_to_file,
|
59 |
organisation: str,
|
60 |
mail: str,
|
61 |
):
|
62 |
-
level = int(level_of_dev.split(" ")[-1])
|
63 |
-
|
64 |
# Very basic email parsing
|
65 |
_, parsed_mail = parseaddr(mail)
|
66 |
if not "@" in parsed_mail:
|
@@ -69,21 +62,25 @@ def add_new_eval(
|
|
69 |
print("Adding new eval")
|
70 |
|
71 |
# Check if the combination model/org already exists and prints a warning message if yes
|
72 |
-
if model.lower() in set(eval_results[
|
73 |
return format_warning("This model has been already submitted.")
|
|
|
|
|
|
|
74 |
|
75 |
# Save submitted file
|
76 |
api.upload_file(
|
77 |
repo_id=SUBMISSION_DATASET,
|
78 |
path_or_fileobj=path_to_file.name,
|
79 |
-
path_in_repo=f"{organisation}/{model}/
|
80 |
repo_type="dataset",
|
81 |
token=BALM_TOKEN
|
82 |
)
|
83 |
|
84 |
# Compute score
|
85 |
file_path = path_to_file.name
|
86 |
-
|
|
|
87 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
88 |
with open(file_path, 'r') as f:
|
89 |
for line in f:
|
@@ -93,24 +90,29 @@ def add_new_eval(
|
|
93 |
raise Exception("No model_answer key in the file provided")
|
94 |
answer = task["model_answer"]
|
95 |
task_id = task["task_id"]
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
scored_file.write(
|
100 |
json.dumps({
|
101 |
"id": task_id,
|
102 |
"model_answer": answer,
|
103 |
-
"score": score
|
|
|
104 |
}) + "\n"
|
105 |
)
|
106 |
|
107 |
-
|
|
|
|
|
|
|
108 |
|
109 |
# Save scored file
|
110 |
api.upload_file(
|
111 |
repo_id=SUBMISSION_DATASET,
|
112 |
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
113 |
-
path_in_repo=f"{organisation}/{model}/
|
114 |
repo_type="dataset",
|
115 |
token=BALM_TOKEN
|
116 |
)
|
@@ -118,25 +120,25 @@ def add_new_eval(
|
|
118 |
# Actual submission
|
119 |
eval_entry = {
|
120 |
"model": model,
|
121 |
-
"score": total_score,
|
122 |
"organisation": organisation,
|
123 |
"mail": mail,
|
|
|
|
|
|
|
|
|
124 |
}
|
125 |
-
eval_results[
|
126 |
-
|
127 |
-
eval_results
|
128 |
|
129 |
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")
|
130 |
|
131 |
|
132 |
def refresh():
|
133 |
-
eval_results =
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
eval_dataframe_2 = pd.DataFrame(eval_results[2].remove_columns("mail"))
|
138 |
-
eval_dataframe_3 = pd.DataFrame(eval_results[3].remove_columns("mail"))
|
139 |
-
return eval_dataframe_1, eval_dataframe_2, eval_dataframe_3
|
140 |
|
141 |
def upload_file(files):
|
142 |
file_paths = [file.name for file in files]
|
@@ -156,17 +158,13 @@ with demo:
|
|
156 |
elem_id="citation-button",
|
157 |
).style(show_copy_button=True)
|
158 |
|
159 |
-
with gr.Tab("Results:
|
160 |
-
|
161 |
-
value=
|
162 |
-
)
|
163 |
-
with gr.Tab("Results: Level 2"):
|
164 |
-
leaderboard_table_2 = gr.components.Dataframe(
|
165 |
-
value=eval_dataframe_2, headers=COLS, datatype=TYPES, interactive=False,
|
166 |
)
|
167 |
-
with gr.Tab("Results:
|
168 |
-
|
169 |
-
value=
|
170 |
)
|
171 |
|
172 |
refresh_button = gr.Button("Refresh")
|
@@ -174,15 +172,14 @@ with demo:
|
|
174 |
refresh,
|
175 |
inputs=[],
|
176 |
outputs=[
|
177 |
-
|
178 |
-
|
179 |
-
leaderboard_table_3,
|
180 |
],
|
181 |
)
|
182 |
with gr.Accordion("Submit a new model for evaluation"):
|
183 |
with gr.Row():
|
184 |
with gr.Column():
|
185 |
-
level_of_test = gr.Radio(["
|
186 |
model_name_textbox = gr.Textbox(label="Model name")
|
187 |
file_output = gr.File()
|
188 |
with gr.Column():
|
|
|
15 |
from scorer import question_scorer
|
16 |
from content import format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
|
17 |
|
18 |
+
BALM_TOKEN = os.environ.get("WTOKEN", None)
|
19 |
|
20 |
OWNER="gaia-benchmark"
|
21 |
DATA_DATASET = f"{OWNER}/GAIA"
|
22 |
+
INTERNAL_DATA_DATASET = f"{OWNER}/GAIA_internal"
|
23 |
+
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
|
24 |
RESULTS_DATASET = f"{OWNER}/results"
|
25 |
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
|
|
|
|
26 |
api = HfApi()
|
27 |
|
28 |
+
YEAR_VERSION = "2023"
|
29 |
+
|
30 |
os.makedirs("scored", exist_ok=True)
|
31 |
|
32 |
# Display the results
|
33 |
+
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN)
|
34 |
+
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
|
35 |
+
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Gold answers
|
38 |
gold_results = {}
|
39 |
+
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, f"{YEAR_VERSION}_all", use_auth_token=BALM_TOKEN)
|
40 |
+
gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "validation"]}
|
|
|
41 |
|
42 |
|
43 |
def restart_space():
|
|
|
48 |
TYPES = ["str", "number", "str",]
|
49 |
|
50 |
def add_new_eval(
|
51 |
+
val_or_test: str,
|
52 |
model: str,
|
53 |
path_to_file,
|
54 |
organisation: str,
|
55 |
mail: str,
|
56 |
):
|
|
|
|
|
57 |
# Very basic email parsing
|
58 |
_, parsed_mail = parseaddr(mail)
|
59 |
if not "@" in parsed_mail:
|
|
|
62 |
print("Adding new eval")
|
63 |
|
64 |
# Check if the combination model/org already exists and prints a warning message if yes
|
65 |
+
if model.lower() in set(eval_results[val_or_test]["model"]) and organisation.lower() in set(eval_results[val_or_test]["organisation"]):
|
66 |
return format_warning("This model has been already submitted.")
|
67 |
+
|
68 |
+
if path_to_file is None:
|
69 |
+
return format_warning("Please attach a file.")
|
70 |
|
71 |
# Save submitted file
|
72 |
api.upload_file(
|
73 |
repo_id=SUBMISSION_DATASET,
|
74 |
path_or_fileobj=path_to_file.name,
|
75 |
+
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
|
76 |
repo_type="dataset",
|
77 |
token=BALM_TOKEN
|
78 |
)
|
79 |
|
80 |
# Compute score
|
81 |
file_path = path_to_file.name
|
82 |
+
scores = {"all": 0, 1: 0, 2: 0, 3: 0}
|
83 |
+
num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
|
84 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
85 |
with open(file_path, 'r') as f:
|
86 |
for line in f:
|
|
|
90 |
raise Exception("No model_answer key in the file provided")
|
91 |
answer = task["model_answer"]
|
92 |
task_id = task["task_id"]
|
93 |
+
level = int(gold_results[val_or_test][task_id]["Level"])
|
94 |
+
|
95 |
+
score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
|
96 |
|
97 |
scored_file.write(
|
98 |
json.dumps({
|
99 |
"id": task_id,
|
100 |
"model_answer": answer,
|
101 |
+
"score": score,
|
102 |
+
"level": level
|
103 |
}) + "\n"
|
104 |
)
|
105 |
|
106 |
+
scores["all"] += score
|
107 |
+
scores[level] += score
|
108 |
+
num_questions["all"] += 1
|
109 |
+
num_questions[level] += 1
|
110 |
|
111 |
# Save scored file
|
112 |
api.upload_file(
|
113 |
repo_id=SUBMISSION_DATASET,
|
114 |
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
115 |
+
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
|
116 |
repo_type="dataset",
|
117 |
token=BALM_TOKEN
|
118 |
)
|
|
|
120 |
# Actual submission
|
121 |
eval_entry = {
|
122 |
"model": model,
|
|
|
123 |
"organisation": organisation,
|
124 |
"mail": mail,
|
125 |
+
"score": scores["all"]/num_questions["all"],
|
126 |
+
"score_level1": scores[1]/num_questions[1],
|
127 |
+
"score_level2": scores[2]/num_questions[2],
|
128 |
+
"score_level3": scores[3]/num_questions[3],
|
129 |
}
|
130 |
+
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
|
131 |
+
print(eval_results)
|
132 |
+
eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=BALM_TOKEN)
|
133 |
|
134 |
return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait for up to an hour to see the score displayed")
|
135 |
|
136 |
|
137 |
def refresh():
|
138 |
+
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, use_auth_token=BALM_TOKEN, download_mode="force_redownload")
|
139 |
+
eval_dataframe_val = pd.DataFrame(eval_results["validation"].remove_columns("mail"))
|
140 |
+
eval_dataframe_test = pd.DataFrame(eval_results["test"].remove_columns("mail"))
|
141 |
+
return eval_dataframe_val, eval_dataframe_test
|
|
|
|
|
|
|
142 |
|
143 |
def upload_file(files):
|
144 |
file_paths = [file.name for file in files]
|
|
|
158 |
elem_id="citation-button",
|
159 |
).style(show_copy_button=True)
|
160 |
|
161 |
+
with gr.Tab("Results: Validation"):
|
162 |
+
leaderboard_table_val = gr.components.Dataframe(
|
163 |
+
value=eval_dataframe_val, headers=COLS, datatype=TYPES, interactive=False,
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
+
with gr.Tab("Results: Test"):
|
166 |
+
leaderboard_table_test = gr.components.Dataframe(
|
167 |
+
value=eval_dataframe_test, headers=COLS, datatype=TYPES, interactive=False,
|
168 |
)
|
169 |
|
170 |
refresh_button = gr.Button("Refresh")
|
|
|
172 |
refresh,
|
173 |
inputs=[],
|
174 |
outputs=[
|
175 |
+
leaderboard_table_val,
|
176 |
+
leaderboard_table_test,
|
|
|
177 |
],
|
178 |
)
|
179 |
with gr.Accordion("Submit a new model for evaluation"):
|
180 |
with gr.Row():
|
181 |
with gr.Column():
|
182 |
+
level_of_test = gr.Radio(["validation", "test"], value="validation", label="Split")
|
183 |
model_name_textbox = gr.Textbox(label="Model name")
|
184 |
file_output = gr.File()
|
185 |
with gr.Column():
|
requirements.txt
CHANGED
@@ -18,7 +18,7 @@ filelock==3.11.0
|
|
18 |
fonttools==4.39.3
|
19 |
frozenlist==1.3.3
|
20 |
fsspec==2023.4.0
|
21 |
-
datasets
|
22 |
gradio==3.27.0
|
23 |
gradio_client==0.1.3
|
24 |
h11==0.14.0
|
|
|
18 |
fonttools==4.39.3
|
19 |
frozenlist==1.3.3
|
20 |
fsspec==2023.4.0
|
21 |
+
datasets==2.14.5
|
22 |
gradio==3.27.0
|
23 |
gradio_client==0.1.3
|
24 |
h11==0.14.0
|