|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
import json |
|
import logging |
|
|
|
|
|
block_size = 256 |
|
vocab_size = 500 |
|
n_embed = 384 |
|
dropout = 0.2 |
|
n_head = 6 |
|
n_layer = 6 |
|
|
|
class Head(nn.Module): |
|
def __init__(self, head_size=16): |
|
super().__init__() |
|
self.query = nn.Linear(n_embed, head_size, bias=False) |
|
self.key = nn.Linear(n_embed, head_size, bias=False) |
|
self.value = nn.Linear(n_embed, head_size, bias=False) |
|
self.register_buffer('tril',torch.tril(torch.ones(block_size,block_size))) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
|
|
def forward(self,x): |
|
B,T,C = x.shape |
|
|
|
q = self.query(x) |
|
k = self.key(x) |
|
|
|
wei = (q @ k.transpose(-2,-1)) * (k.shape[-1]**(-0.5)) |
|
wei = wei.masked_fill(self.tril[:T,:T]==0, float('-inf')) |
|
wei = F.softmax(wei, dim=-1) |
|
wei = self.dropout(wei) |
|
|
|
v = self.value(x) |
|
|
|
out = wei @ v |
|
|
|
return out |
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self,num_heads, head_size) : |
|
super().__init__() |
|
|
|
self.heads = nn.ModuleList(Head(head_size=head_size) for _ in range(num_heads)) |
|
self.proj = nn.Linear(head_size * num_heads, n_embed) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
out = torch.cat([h(x) for h in self.heads], dim=-1) |
|
out = self.dropout(self.proj(out)) |
|
return out |
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self,n_embed) -> None: |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(n_embed,4* n_embed), |
|
nn.ReLU(), |
|
nn.Linear(4 * n_embed, n_embed), |
|
nn.Dropout(dropout), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.net(x) |
|
return x |
|
|
|
class decoder_block(nn.Module): |
|
def __init__(self, n_embed, n_heads): |
|
super().__init__() |
|
self.sa = MultiHeadAttention(n_heads,n_embed//n_heads) |
|
self.ln1 = nn.LayerNorm(n_embed) |
|
self.ln2 = nn.LayerNorm(n_embed) |
|
self.ffwd = FeedForward(n_embed) |
|
|
|
def forward(self, x): |
|
x = x + self.sa(self.ln1(x)) |
|
x = x + self.ffwd(self.ln2(x)) |
|
return x |
|
|
|
|
|
|
|
class my_gpt(nn.Module): |
|
def __init__(self, block_size = 256): |
|
super().__init__() |
|
self.block_size = block_size |
|
self.token_embed = nn.Embedding(vocab_size, n_embed) |
|
self.pos_embed = nn.Embedding(vocab_size, n_embed) |
|
self.lm_head = nn.Linear(n_embed, vocab_size) |
|
self.sa_head = Head(vocab_size) |
|
self.d_blocks = nn.Sequential(*[decoder_block(n_embed=n_embed,n_heads=n_head) for _ in range(n_layer)]) |
|
self.ln_f = nn.LayerNorm(n_embed) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets = None): |
|
""" |
|
Args: |
|
idx: int(B,T) Token ids |
|
targets : |
|
|
|
Returns: |
|
logits |
|
""" |
|
|
|
B, T = idx.shape |
|
tok_emd = self.token_embed(idx) |
|
pos_emd = self.pos_embed(idx) |
|
|
|
|
|
x = tok_emd + pos_emd |
|
|
|
|
|
x = self.d_blocks(x) |
|
x = self.ln_f(x) |
|
|
|
logits = self.lm_head(x) |
|
if targets is None: |
|
loss = None |
|
else: |
|
B, T, C = logits.shape |
|
|
|
logits = logits.view(B*T,C) |
|
targets = targets.view(B*T) |
|
|
|
loss = F.cross_entropy(logits, targets) |
|
|
|
|
|
return logits, loss |
|
|
|
|
|
def generate(self, context : torch.tensor, max_new_tokens: int = 46, use_cache = False): |
|
""" |
|
Generates the next "max_new_tokens" number of tokens. |
|
|
|
Args: |
|
context (B,T): |
|
max_new_tokens (int): |
|
|
|
Returns: |
|
[token] : List of generated tokens. |
|
""" |
|
|
|
for _ in range(max_new_tokens): |
|
|
|
idx_tokens = context[:, -self.block_size:] |
|
|
|
|
|
logits, loss = self(idx_tokens) |
|
|
|
|
|
logits = logits[:,-1,:] |
|
|
|
|
|
probs = F.softmax(logits, dim= -1) |
|
idx_next = torch.multinomial(probs,num_samples=1) |
|
|
|
context = torch.concatenate([context, idx_next], dim=1) |
|
|
|
return context |
|
|
|
def save_pretrained(self, path): |
|
torch.save(self.state_dict(),path) |
|
print("Saved pretrained Successfully") |
|
|
|
@classmethod |
|
def load_pretrained(cls, path): |
|
print("Loading pretrained model...") |
|
model = cls() |
|
model.load_state_dict(torch.load(path)) |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|