|
import gradio as gr |
|
import torch |
|
from my_gpt import my_gpt |
|
from tokenizer.tokenizer import BPE |
|
|
|
|
|
model = my_gpt.load_pretrained("model/model_1000_cpu.bin") |
|
|
|
|
|
|
|
tokenizer = BPE() |
|
|
|
|
|
|
|
def generate(input_text): |
|
tokens = tokenizer.encode(input_text) |
|
gen_ids = model.generate(torch.tensor([tokens])) |
|
output = tokenizer.decode(gen_ids[0].tolist()) |
|
return output |
|
|
|
iface = gr.Interface(fn=generate, |
|
inputs="text", |
|
outputs="text", |
|
title="GPT - 1000 steps", |
|
description="""This model is trained for 1000 steps only. It is not |
|
able to generate perfect sentences/words. However, it has learnt a gist of the English language""") |
|
iface.launch() |