Qihang Yu
Add kMaX-DeepLab
a06fad0
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/meta_arch/mask_former_head.py
# Modified by Qihang Yu
from typing import Dict
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import ShapeSpec
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
from ..transformer_decoder.kmax_transformer_decoder import build_transformer_decoder
def build_pixel_decoder(cfg, input_shape):
"""
Build a pixel decoder from `cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.NAME`.
"""
name = cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.NAME
model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
forward_features = getattr(model, "forward_features", None)
if not callable(forward_features):
raise ValueError(
"Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
f"Please implement forward_features for {name} to only return mask features."
)
return model
@SEM_SEG_HEADS_REGISTRY.register()
class kMaXDeepLabHead(nn.Module):
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
num_classes: int,
pixel_decoder: nn.Module,
loss_weight: float = 1.0,
ignore_value: int = -1,
transformer_predictor: nn.Module,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shapes (channels and stride) of the input features
num_classes: number of classes to predict
pixel_decoder: the pixel decoder module
loss_weight: loss weight
ignore_value: category id to be ignored during training.
transformer_predictor: the transformer decoder that makes prediction
transformer_in_feature: input feature name to the transformer_predictor
"""
super().__init__()
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
self.in_features = [k for k, v in input_shape]
self.ignore_value = ignore_value
self.common_stride = 4
self.loss_weight = loss_weight
self.pixel_decoder = pixel_decoder
self.predictor = transformer_predictor
self.num_classes = num_classes
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
return {
"input_shape": {
k: v for k, v in input_shape.items() if k in cfg.MODEL.KMAX_DEEPLAB.PIXEL_DEC.IN_FEATURES
},
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
"pixel_decoder": build_pixel_decoder(cfg, input_shape),
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
"transformer_predictor": build_transformer_decoder(cfg, input_shape),
}
def forward(self, features):
return self.layers(features)
def layers(self, features):
panoptic_features, semantic_features, multi_scale_features = self.pixel_decoder.forward_features(features)
predictions = self.predictor(multi_scale_features, panoptic_features, semantic_features)
return predictions