Qihang Yu
Add kMaX-DeepLab
a06fad0
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/matcher.py
# Reference: https://github.com/google-research/deeplab2/blob/main/model/loss/max_deeplab_loss.py
# Modified by Qihang Yu
"""
Modules to compute the matching cost and solve the corresponding LSAP.
"""
import torch
import torch.nn.functional as F
from scipy.optimize import linear_sum_assignment
from torch import nn
from torch.cuda.amp import autocast
import numpy as np
# https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/max_deeplab_loss.py#L158
@torch.no_grad()
def compute_mask_similarity(inputs: torch.Tensor, targets: torch.Tensor):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
denominator_epsilon = 1e-5
inputs = F.softmax(inputs, dim=0)
inputs = inputs.flatten(1) # N x HW
pixel_gt_non_void_mask = (targets.sum(0, keepdim=True) > 0).to(inputs) # 1xHW
inputs = inputs * pixel_gt_non_void_mask
intersection = torch.einsum("nc,mc->nm", inputs, targets)
denominator = (inputs.sum(-1)[:, None] + targets.sum(-1)[None, :]) / 2.0
return intersection / (denominator + denominator_epsilon)
# https://github.com/google-research/deeplab2/blob/c4a533c14fac1a1071a6d24c5379c31a69a3e5e6/model/loss/max_deeplab_loss.py#L941
@torch.no_grad()
def compute_class_similarity(inputs: torch.Tensor, targets: torch.Tensor):
pred_class_prob = inputs.softmax(-1)[..., :-1] # exclude the void class
return pred_class_prob[:, targets]
class HungarianMatcher(nn.Module):
"""This class computes an assignment between the targets and the predictions of the network
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
while the others are un-matched (and thus treated as non-objects).
"""
def __init__(self):
"""Creates the matcher
Params:
cost_class: This is the relative weight of the classification error in the matching cost
cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost
cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost
"""
super().__init__()
@torch.no_grad()
def memory_efficient_forward(self, outputs, targets):
"""More memory-friendly matching"""
bs, num_queries = outputs["pred_logits"].shape[:2]
indices = []
matched_dice = []
matched_cls_prob = []
# Iterate through batch size
for b in range(bs):
with autocast(enabled=False):
class_similarity = compute_class_similarity(outputs["pred_logits"][b].float(), targets[b]["labels"])
out_mask = outputs["pred_masks"][b].flatten(1) # [num_queries, H_pred, W_pred]
# gt masks are already padded when preparing target
tgt_mask = targets[b]["masks"].to(out_mask).flatten(1)
with autocast(enabled=False):
mask_similarity = compute_mask_similarity(out_mask.float(), tgt_mask.float())
# Final cost matrix
C = - mask_similarity * class_similarity
C = C.reshape(num_queries, -1).cpu() # N x M , N = num_queries, M = num_gt
# the assignment will be truncated to a square matrix.
row_ind, col_ind = linear_sum_assignment(C)
matched_dice.append(mask_similarity[row_ind, col_ind].detach())
matched_cls_prob.append(class_similarity[row_ind, col_ind].detach())
indices.append((row_ind, col_ind)) # row_ind and col_ind, row_ind = 0,1,2,3,...,N-1, col_ind = a,b,c,d,...
indices = [
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
for i, j in indices
]
return indices, matched_dice, matched_cls_prob
@torch.no_grad()
def forward(self, outputs, targets):
"""Performs the matching
Params:
outputs: This is a dict that contains at least these entries:
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
"pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
objects in the target) containing the class labels
"masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks
Returns:
A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
return self.memory_efficient_forward(outputs, targets)
def __repr__(self, _repr_indent=4):
head = "Matcher " + self.__class__.__name__
body = []
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)