|
import os |
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
import config |
|
from logger import logger |
|
from utils.download import download_and_verify |
|
from config import DEVICE as device |
|
|
|
URLS = [ |
|
"https://huggingface.co/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin", |
|
] |
|
TARGET_PATH = os.path.join(config.ABS_PATH, "bert_vits2/bert/bert-base-japanese-v3/pytorch_model.bin") |
|
EXPECTED_MD5 = None |
|
|
|
if not os.path.exists(TARGET_PATH): |
|
success, message = download_and_verify(URLS, TARGET_PATH, EXPECTED_MD5) |
|
|
|
try: |
|
logger.info("Loading bert-base-japanese-v3...") |
|
tokenizer = AutoTokenizer.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/bert-base-japanese-v3") |
|
model = AutoModelForMaskedLM.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/bert-base-japanese-v3").to( |
|
device) |
|
logger.info("Loading finished.") |
|
except Exception as e: |
|
logger.error(e) |
|
logger.error(f"Please download pytorch_model.bin from cl-tohoku/bert-base-japanese-v3.") |
|
|
|
|
|
def get_bert_feature(text, word2ph, device=config.DEVICE): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() |
|
assert inputs["input_ids"].shape[-1] == len(word2ph) |
|
word2phone = word2ph |
|
phone_level_feature = [] |
|
for i in range(len(word2phone)): |
|
repeat_feature = res[i].repeat(word2phone[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|