|
import os |
|
|
|
import config |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
from logger import logger |
|
from utils.download import download_and_verify |
|
from config import DEVICE as device |
|
|
|
URLS = [ |
|
"https://huggingface.co/hfl/chinese-roberta-wwm-ext-large/resolve/main/pytorch_model.bin", |
|
] |
|
TARGET_PATH = os.path.join(config.ABS_PATH, "bert_vits2/bert/chinese-roberta-wwm-ext-large/pytorch_model.bin") |
|
EXPECTED_MD5 = None |
|
|
|
if not os.path.exists(TARGET_PATH): |
|
success, message = download_and_verify(URLS, TARGET_PATH, EXPECTED_MD5) |
|
|
|
try: |
|
logger.info("Loading chinese-roberta-wwm-ext-large...") |
|
tokenizer = AutoTokenizer.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/chinese-roberta-wwm-ext-large") |
|
model = AutoModelForMaskedLM.from_pretrained(config.ABS_PATH + "/bert_vits2/bert/chinese-roberta-wwm-ext-large").to( |
|
device) |
|
logger.info("Loading finished.") |
|
except Exception as e: |
|
logger.error(e) |
|
logger.error(f"Please download pytorch_model.bin from hfl/chinese-roberta-wwm-ext-large.") |
|
|
|
|
|
def get_bert_feature(text, word2ph, device=config.DEVICE): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors='pt') |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res['hidden_states'][-3:-2], -1)[0].cpu() |
|
|
|
assert len(word2ph) == len(text) + 2 |
|
word2phone = word2ph |
|
phone_level_feature = [] |
|
for i in range(len(word2phone)): |
|
repeat_feature = res[i].repeat(word2phone[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|
|
|
|
if __name__ == '__main__': |
|
import torch |
|
|
|
word_level_feature = torch.rand(38, 1024) |
|
word2phone = [1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, |
|
2, 2, 2, 1] |
|
|
|
|
|
total_frames = sum(word2phone) |
|
print(word_level_feature.shape) |
|
print(word2phone) |
|
phone_level_feature = [] |
|
for i in range(len(word2phone)): |
|
print(word_level_feature[i].shape) |
|
|
|
|
|
repeat_feature = word_level_feature[i].repeat(word2phone[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
print(phone_level_feature.shape) |
|
|