versa / app.py
ftshijt
update app.py
dfa3d55
raw
history blame
7.43 kB
import os
import sys
import subprocess
import gradio as gr
import json
import yaml
import tempfile
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
from pathlib import Path
# Check if VERSA is installed, if not, clone and install it
VERSA_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "versa")
def setup_versa():
"""Set up VERSA and its dependencies if not already installed"""
if not os.path.exists(VERSA_ROOT):
print("VERSA not found. Installing...")
# Clone VERSA repository
subprocess.run(
["git", "clone", "https://github.com/shinjiwlab/versa.git", VERSA_ROOT],
check=True
)
# Install VERSA
subprocess.run(
["pip", "install", "-e", VERSA_ROOT],
check=True
)
print("VERSA installed successfully!")
else:
print("VERSA already installed.")
# Install VERSA if not already installed
setup_versa()
# VERSA paths
VERSA_BIN = os.path.join(VERSA_ROOT, "versa", "bin", "scorer.py")
VERSA_CONFIG_DIR = os.path.join(VERSA_ROOT, "egs")
# Create data directory if it doesn't exist
DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
UPLOAD_DIR = os.path.join(DATA_DIR, "uploads")
RESULTS_DIR = os.path.join(DATA_DIR, "results")
for directory in [DATA_DIR, UPLOAD_DIR, RESULTS_DIR]:
os.makedirs(directory, exist_ok=True)
# Find available metric configs
def get_available_metrics():
"""Get list of available metrics from VERSA config directory"""
metrics = []
# Get all YAML files from the egs directory
for root, _, files in os.walk(VERSA_CONFIG_DIR):
for file in files:
if file.endswith('.yaml'):
path = os.path.join(root, file)
# Get relative path from VERSA_CONFIG_DIR
rel_path = os.path.relpath(path, VERSA_CONFIG_DIR)
metrics.append(rel_path)
return sorted(metrics)
# Get metric description from YAML file
def get_metric_description(metric_path):
"""Get description of a metric from its YAML file"""
full_path = os.path.join(VERSA_CONFIG_DIR, metric_path)
try:
with open(full_path, 'r') as f:
config = yaml.safe_load(f)
return config.get('description', 'No description available')
except Exception as e:
return f"Could not load description: {str(e)}"
# Process audio files and run VERSA evaluation
def evaluate_audio(gt_file, pred_file, metric_config, include_timestamps=False):
"""Evaluate audio files using VERSA"""
if gt_file is None or pred_file is None:
return "Please upload both ground truth and prediction audio files."
# Create temp directory for results
with tempfile.TemporaryDirectory() as temp_dir:
output_file = os.path.join(temp_dir, "result.json")
# Full path to metric config
metric_config_path = os.path.join(VERSA_CONFIG_DIR, metric_config)
# Build command
cmd = [
sys.executable, VERSA_BIN,
"--score_config", metric_config_path,
"--gt", gt_file,
"--pred", pred_file,
"--output_file", output_file
]
if include_timestamps:
cmd.append("--include_timestamp")
# Run VERSA evaluation
try:
process = subprocess.run(
cmd,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# Read results
if os.path.exists(output_file):
with open(output_file, 'r') as f:
results = json.load(f)
# Format results as DataFrame
if results:
results_df = pd.DataFrame(results)
return results_df, json.dumps(results, indent=2)
else:
return None, "Evaluation completed but no results were generated."
else:
return None, "Evaluation completed but no results file was generated."
except subprocess.CalledProcessError as e:
return None, f"Error running VERSA: {e.stderr}"
# Create the Gradio interface
def create_gradio_demo():
"""Create the Gradio demo interface"""
available_metrics = get_available_metrics()
default_metric = "speech.yaml" if "speech.yaml" in available_metrics else available_metrics[0] if available_metrics else None
with gr.Blocks(title="VERSA Speech & Audio Evaluation Demo") as demo:
gr.Markdown("# VERSA: Versatile Evaluation of Speech and Audio")
gr.Markdown("Upload audio files to evaluate them using VERSA metrics.")
with gr.Row():
with gr.Column():
gt_audio = gr.Audio(label="Ground Truth Audio", type="filepath", sources=["upload", "microphone"])
pred_audio = gr.Audio(label="Prediction Audio", type="filepath", sources=["upload", "microphone"])
metric_dropdown = gr.Dropdown(
choices=available_metrics,
label="Evaluation Metric",
value=default_metric
)
metric_description = gr.Textbox(
label="Metric Description",
value=get_metric_description(default_metric) if default_metric else "",
interactive=False
)
include_timestamps = gr.Checkbox(
label="Include Timestamps in Results",
value=False
)
eval_button = gr.Button("Evaluate")
with gr.Column():
results_table = gr.Dataframe(label="Evaluation Results")
raw_json = gr.Code(language="json", label="Raw Results")
# Event handlers
def update_metric_description(metric_path):
return get_metric_description(metric_path)
metric_dropdown.change(
fn=update_metric_description,
inputs=[metric_dropdown],
outputs=[metric_description]
)
eval_button.click(
fn=evaluate_audio,
inputs=[gt_audio, pred_audio, metric_dropdown, include_timestamps],
outputs=[results_table, raw_json]
)
gr.Markdown("""
## About VERSA
VERSA (Versatile Evaluation of Speech and Audio) is a toolkit dedicated to collecting evaluation metrics in speech and audio quality. It provides a comprehensive connection to cutting-edge evaluation techniques and is tightly integrated with ESPnet.
With full installation, VERSA offers over 60 metrics with 700+ metric variations based on different configurations. These metrics encompass evaluations utilizing diverse external resources, including matching and non-matching reference audio, text transcriptions, and text captions.
Learn more at [VERSA GitHub Repository](https://github.com/shinjiwlab/versa)
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_gradio_demo()
demo.launch()