Spaces:
Running
Running
ftakelait
commited on
Commit
·
b1c0f8d
1
Parent(s):
23a7f71
Add application files
Browse files- app.py +68 -0
- da_en_RoBERTa_pretrained/en_tokenizer/special_tokens_map.json +1 -0
- da_en_RoBERTa_pretrained/en_tokenizer/tokenizer.json +0 -0
- da_en_RoBERTa_pretrained/en_tokenizer/tokenizer_config.json +1 -0
- da_en_RoBERTa_pretrained/model.pt +3 -0
- da_en_RoBERTa_pretrained/model_config.json +1 -0
- da_en_output_dir/da_tokenizer/special_tokens_map.json +1 -0
- da_en_output_dir/da_tokenizer/tokenizer.json +0 -0
- da_en_output_dir/da_tokenizer/tokenizer_config.json +1 -0
- da_en_output_dir/en_tokenizer/special_tokens_map.json +1 -0
- da_en_output_dir/en_tokenizer/tokenizer.json +0 -0
- da_en_output_dir/en_tokenizer/tokenizer_config.json +1 -0
- da_en_output_dir/model.pt +3 -0
- da_en_output_dir/model_config.json +1 -0
- requirements.txt +5 -0
- transformer_mt/__init__.py +0 -0
- transformer_mt/modeling_attention.py +126 -0
- transformer_mt/modeling_transformer.py +579 -0
- transformer_mt/utils.py +42 -0
- transformer_mt_roberta/__init__.py +0 -0
- transformer_mt_roberta/__pycache__/__init__.cpython-37.pyc +0 -0
- transformer_mt_roberta/__pycache__/modeling_attention.cpython-37.pyc +0 -0
- transformer_mt_roberta/__pycache__/modeling_transformer.cpython-37.pyc +0 -0
- transformer_mt_roberta/__pycache__/modeling_transformer_final.cpython-37.pyc +0 -0
- transformer_mt_roberta/__pycache__/utils.cpython-37.pyc +0 -0
- transformer_mt_roberta/modeling_attention.py +126 -0
- transformer_mt_roberta/modeling_transformer_final.py +353 -0
- transformer_mt_roberta/utils.py +42 -0
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from cryptography.utils import CryptographyDeprecationWarning
|
3 |
+
|
4 |
+
with warnings.catch_warnings():
|
5 |
+
warnings.filterwarnings('ignore', category=CryptographyDeprecationWarning)
|
6 |
+
import paramiko
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
#from transformers import pipeline
|
10 |
+
from transformers import PreTrainedTokenizerFast, AutoTokenizer
|
11 |
+
from transformers import PreTrainedTokenizerFast
|
12 |
+
from transformer_mt.modeling_transformer import TransfomerEncoderDecoderModel
|
13 |
+
from transformer_mt_roberta.modeling_transformer_final import TransfomerEncoderDecoderModel as mt_roberta
|
14 |
+
|
15 |
+
#translation_pipeline = pipeline('translation_en_to_fr')
|
16 |
+
|
17 |
+
# seting up translation transformer into Gradio
|
18 |
+
#def translator_fn(text_input):
|
19 |
+
# results = translation_pipeline(text_input)
|
20 |
+
# return results[0]['translation_text']
|
21 |
+
|
22 |
+
# def translator_fn_baseline(text_in):
|
23 |
+
# source_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/da_tokenizer")
|
24 |
+
# target_tokenizer = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/en_tokenizer")
|
25 |
+
# model = TransfomerEncoderDecoderModel.from_pretrained("da_en_output_dir")
|
26 |
+
<<<<<<< HEAD
|
27 |
+
#
|
28 |
+
=======
|
29 |
+
#
|
30 |
+
>>>>>>> adb80531e202c58b4ab91375bc391ab50bbc882f
|
31 |
+
# input_ids = source_tokenizer.encode(text_in, return_tensors="pt")
|
32 |
+
# output_ids = model.generate(
|
33 |
+
# input_ids,
|
34 |
+
# max_length=10,
|
35 |
+
# bos_token_id=target_tokenizer.bos_token_id,
|
36 |
+
# eos_token_id=target_tokenizer.eos_token_id,
|
37 |
+
# pad_token_id=target_tokenizer.pad_token_id,
|
38 |
+
# )
|
39 |
+
<<<<<<< HEAD
|
40 |
+
#
|
41 |
+
=======
|
42 |
+
#
|
43 |
+
>>>>>>> adb80531e202c58b4ab91375bc391ab50bbc882f
|
44 |
+
# return target_tokenizer.decode(output_ids[0])
|
45 |
+
|
46 |
+
def translator_fn_roberta(text_in):
|
47 |
+
source_tokenizer_pretrained_roberta = AutoTokenizer.from_pretrained("flax-community/roberta-base-danish")
|
48 |
+
target_tokenizer_pretrained_roberta = PreTrainedTokenizerFast.from_pretrained("da_en_output_dir/en_tokenizer")
|
49 |
+
model_pretrained_roberta = mt_roberta.from_pretrained("da_en_RoBERTa_pretrained")
|
50 |
+
|
51 |
+
input_ids_pretrained_roberta = source_tokenizer_pretrained_roberta.encode(text_in, return_tensors="pt")
|
52 |
+
output_ids_pretrained_roberta = input_ids_pretrained_roberta.generate(
|
53 |
+
input_ids_pretrained_roberta,
|
54 |
+
max_length=10,
|
55 |
+
bos_token_id=target_tokenizer_pretrained_roberta.bos_token_id,
|
56 |
+
eos_token_id=target_tokenizer_pretrained_roberta.eos_token_id,
|
57 |
+
pad_token_id=target_tokenizer_pretrained_roberta.pad_token_id,
|
58 |
+
)
|
59 |
+
return target_tokenizer_pretrained_roberta.decode(output_ids_pretrained_roberta[0])
|
60 |
+
|
61 |
+
iface = gr.Interface(fn=translator_fn_roberta,
|
62 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder=None, label="Your Danish text goes here."),
|
63 |
+
outputs=['text'], # a list should match the number of values returned by fn to have one input and 2 putputs.
|
64 |
+
description = "This App translates text from Danish to the English language.",
|
65 |
+
title = "Danish to English Translator App",
|
66 |
+
theme = "peach")
|
67 |
+
|
68 |
+
iface.launch(share=False, enable_queue=True)
|
da_en_RoBERTa_pretrained/en_tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[BOS]", "eos_token": "[EOS]", "pad_token": "[PAD]"}
|
da_en_RoBERTa_pretrained/en_tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
da_en_RoBERTa_pretrained/en_tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[BOS]", "eos_token": "[EOS]", "pad_token": "[PAD]", "tokenizer_class": "PreTrainedTokenizerFast"}
|
da_en_RoBERTa_pretrained/model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43e9463469dfeb0d2c5fed75b6181ec570e95fda4c6565c6f80387782f1aa618
|
3 |
+
size 885137451
|
da_en_RoBERTa_pretrained/model_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"num_layers": 6, "hidden": 768, "num_heads": 8, "fcn_hidden": 2048, "src_vocab_size": 32000, "tgt_vocab_size": 32000, "max_seq_len": 128, "dropout": 0.1}
|
da_en_output_dir/da_tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[BOS]", "eos_token": "[EOS]", "pad_token": "[PAD]"}
|
da_en_output_dir/da_tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
da_en_output_dir/da_tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[BOS]", "eos_token": "[EOS]", "pad_token": "[PAD]", "tokenizer_class": "PreTrainedTokenizerFast"}
|
da_en_output_dir/en_tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[BOS]", "eos_token": "[EOS]", "pad_token": "[PAD]"}
|
da_en_output_dir/en_tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
da_en_output_dir/en_tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[BOS]", "eos_token": "[EOS]", "pad_token": "[PAD]", "tokenizer_class": "PreTrainedTokenizerFast"}
|
da_en_output_dir/model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d93af21df63a573aac135ee8e6a3e984424471f07e707a942f660be1854f1067
|
3 |
+
size 616931903
|
da_en_output_dir/model_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"num_layers": 6, "hidden": 768, "num_heads": 8, "fcn_hidden": 2048, "src_vocab_size": 32000, "tgt_vocab_size": 32000, "max_seq_len": 128, "dropout": 0.1}
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch >= 1.3
|
2 |
+
datasets >= 1.8.0
|
3 |
+
tokenizers
|
4 |
+
wandb
|
5 |
+
transformers
|
transformer_mt/__init__.py
ADDED
File without changes
|
transformer_mt/modeling_attention.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 Vladislav Lialin and Namrata Shivagunde
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
|
21 |
+
class MultiHeadAttention(nn.Module):
|
22 |
+
def __init__(self, input_size, hidden, num_heads, causal=False):
|
23 |
+
"""Multi-head attention module which computes [softmax(xQ_h @ xK_h^T) @ xV: ...] @ U
|
24 |
+
|
25 |
+
Can work as both self-attention or cross-attention (if kv is provided to .forward).
|
26 |
+
|
27 |
+
Args:
|
28 |
+
causal: use causal masking (do not allow target to look to the future or current token of source)
|
29 |
+
"""
|
30 |
+
if hidden % num_heads:
|
31 |
+
raise ValueError(f"hidden should be divisible by num_heads, "
|
32 |
+
f"but got hidden={hidden} and num_heads={num_heads}")
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.k = nn.Linear(input_size, hidden)
|
36 |
+
self.q = nn.Linear(input_size, hidden)
|
37 |
+
self.v = nn.Linear(input_size, hidden)
|
38 |
+
self.mix = nn.Linear(hidden, hidden)
|
39 |
+
|
40 |
+
self.num_heads = num_heads
|
41 |
+
self.head_size = hidden // num_heads
|
42 |
+
self.scale = self.head_size ** 0.5
|
43 |
+
self.causal = causal # causal masking
|
44 |
+
|
45 |
+
def forward(self, q, kv=None, key_padding_mask=None, return_attention=False):
|
46 |
+
"""[Softmax(source Q_1 @ target K_1^T) @ target V_1 : ... ) @ x V_heads] @ U
|
47 |
+
|
48 |
+
Performs self-attention if kv is not specified.
|
49 |
+
In this case, kv = q and kv_seq_len = query_seq_len.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
q: FloatTensor[batch_size, query_seq_len, input_size]
|
53 |
+
kv (target) : optional, FloatTensor[batch_size, kv_seq_len, input_size]
|
54 |
+
key_padding_mask: BoolTensor[batch_size, kv_seq_len] 0 means unpadded, 1 means padded
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
FloatTensor[batch_size, seq_len, hidden]
|
58 |
+
"""
|
59 |
+
|
60 |
+
# Task 1.1 (1 point)
|
61 |
+
# Update this function with cross-attention mechanism
|
62 |
+
# If target is None, then target (kv) and source (q) will be same.
|
63 |
+
# Define k, q, v using self.k, self.q and self.v based on if the target exists or not
|
64 |
+
# Note : Please write shape of each tensor for each line of code
|
65 |
+
## YOUR CODE STARTS HERE## ~ 2 lines code
|
66 |
+
k = self.k(kv) if kv!=None else self.k(q)
|
67 |
+
# print('k', k.shape, 'q', q.shape)
|
68 |
+
q = self.q(q)
|
69 |
+
v = self.v(kv) if kv!=None else self.v(q)
|
70 |
+
# print("KV", kv)
|
71 |
+
|
72 |
+
# YOUR CODE ENDS HERE
|
73 |
+
|
74 |
+
bs, attending_seq, _ = q.shape
|
75 |
+
attended_seq = k.shape[1]
|
76 |
+
|
77 |
+
# [b, s, h] -> [b, h, s] -> [b * heads, h / heads, s] -> [b * heads, s, h / heads]
|
78 |
+
k = k.transpose(1, 2).reshape(bs * self.num_heads, self.head_size, -1).transpose(1, 2).contiguous() # [batch * num_heads, seq, hidden / num_heads]
|
79 |
+
q = q.transpose(1, 2).reshape(bs * self.num_heads, self.head_size, -1).transpose(1, 2).contiguous()
|
80 |
+
v = v.transpose(1, 2).reshape(bs * self.num_heads, self.head_size, -1).transpose(1, 2).contiguous()
|
81 |
+
|
82 |
+
scores = q @ k.transpose(1, 2) / self.scale # [batch * num_heads, attending_seq, attended_seq]
|
83 |
+
assert scores.shape == (bs * self.num_heads, attending_seq, attended_seq)
|
84 |
+
|
85 |
+
|
86 |
+
if key_padding_mask is not None:
|
87 |
+
# Task 1.2 (1 point)
|
88 |
+
# Padding
|
89 |
+
# Set the scores corresponding to padded positions (key_padding_mask == 1) to -inf
|
90 |
+
#
|
91 |
+
# You might need to reshape the scores to [batch_size, seq_len, seq_len]
|
92 |
+
# in this case, remember to reshape them back
|
93 |
+
# Our implementation is 3 lines
|
94 |
+
# YOUR CODE STARTS HERE
|
95 |
+
# print(scores.shape, key_padding_mask.unsqueeze(-2).shape)
|
96 |
+
|
97 |
+
|
98 |
+
scores = scores.reshape(self.num_heads, bs, attending_seq, attended_seq)
|
99 |
+
scores_check = scores.reshape(bs, self.num_heads, attending_seq, -1)
|
100 |
+
# print("Socres:", scores.shape, "Scores_Check:", scores_check.shape)
|
101 |
+
# print('----')
|
102 |
+
scores = scores.masked_fill(key_padding_mask.unsqueeze(-2)==1, value = float("-inf"))
|
103 |
+
scores = scores.view(bs * self.num_heads, attending_seq, attended_seq)
|
104 |
+
|
105 |
+
|
106 |
+
# YOUR CODE ENDS HERE
|
107 |
+
|
108 |
+
assert scores.size() == (bs * self.num_heads, attending_seq, attended_seq),\
|
109 |
+
f"scores have wrong shape. Expected {(bs * self.num_heads, attending_seq, attended_seq)}, got {scores.size()}"
|
110 |
+
|
111 |
+
if self.causal:
|
112 |
+
causal_mask = torch.triu(torch.ones(attending_seq, attended_seq, dtype=torch.bool, device=scores.device), diagonal=1)
|
113 |
+
scores.masked_fill_(causal_mask.bool().unsqueeze(0), float("-inf"))
|
114 |
+
|
115 |
+
probs = torch.softmax(scores, dim=-1) # [batch * num_heads, tgt_seq, src_seq]
|
116 |
+
att = probs @ v # [batch * num_heads, tgt_seq, hidden / num_heads]
|
117 |
+
|
118 |
+
# [b * heads, s, h / heads] -> [b * heads, h / heads, s] -> [b, h, s] -> [b, s, h]
|
119 |
+
att = att.transpose(1, 2).reshape(bs, -1, attending_seq).transpose(1, 2).contiguous()
|
120 |
+
|
121 |
+
att = self.mix(att)
|
122 |
+
|
123 |
+
if return_attention:
|
124 |
+
return att, probs
|
125 |
+
|
126 |
+
return att
|
transformer_mt/modeling_transformer.py
ADDED
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 Vladislav Lialin and Namrata Shivagunde
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import os
|
17 |
+
import json
|
18 |
+
from collections import namedtuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from transformer_mt.modeling_attention import MultiHeadAttention
|
25 |
+
from transformer_mt.utils import pad
|
26 |
+
|
27 |
+
|
28 |
+
Hypothesis = namedtuple("Hypothesis", ["value", "score"])
|
29 |
+
|
30 |
+
|
31 |
+
class TransformerEncoderLayer(nn.Module):
|
32 |
+
def __init__(self, hidden, num_heads, fcn_hidden, dropout=0.0, causal=False):
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.self_attention = MultiHeadAttention(
|
36 |
+
input_size=hidden,
|
37 |
+
hidden=hidden,
|
38 |
+
num_heads=num_heads,
|
39 |
+
causal=causal,
|
40 |
+
)
|
41 |
+
self.att_layer_norm = nn.LayerNorm(hidden)
|
42 |
+
|
43 |
+
self.fcn = nn.Sequential(
|
44 |
+
nn.Linear(hidden, fcn_hidden),
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.Linear(fcn_hidden, hidden),
|
47 |
+
)
|
48 |
+
self.fcn_layer_norm = nn.LayerNorm(hidden)
|
49 |
+
self.dropout = nn.Dropout(dropout)
|
50 |
+
|
51 |
+
def forward(self, x, key_padding_mask=None):
|
52 |
+
"""Self-Attention -> residual -> LayerNorm -> FCN -> residual -> LayerNorm
|
53 |
+
|
54 |
+
Args:
|
55 |
+
x: FloatTensor[batch_size, seq_len, input_size]
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
FloatTensor[batch_size, seq_len, hidden]
|
59 |
+
"""
|
60 |
+
# print('calling encode', key_padding_mask.shape)
|
61 |
+
residual = x
|
62 |
+
x = self.self_attention(x, key_padding_mask=key_padding_mask)
|
63 |
+
x = self.att_layer_norm(x + residual)
|
64 |
+
|
65 |
+
residual = x
|
66 |
+
x = self.fcn(x)
|
67 |
+
x = self.dropout(x)
|
68 |
+
x = self.fcn_layer_norm(x + residual)
|
69 |
+
|
70 |
+
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class TransformerDecoderLayer(nn.Module):
|
75 |
+
def __init__(self, hidden, num_heads, fcn_hidden, dropout=0.0):
|
76 |
+
super().__init__()
|
77 |
+
|
78 |
+
# Task 2.1 (1 point)
|
79 |
+
# Create layers needed for Transformer Decoder Layer
|
80 |
+
# 1. Create self.self_attention layer using MultiHeadAttention
|
81 |
+
# 2. Create self.cross_attention layer using MultiHeadAttention
|
82 |
+
# 2a. Which one of self_attention or cross_attention should have causal=True? Set it there.
|
83 |
+
# 3. Create self.att_layer_norm, self.cross_att_layer_norm, and self.fcn_layer_norm layers using LayerNorm
|
84 |
+
# 4. Create self.fcn network using nn.Sequential, nn.ReLU and nn.Linear
|
85 |
+
# 5. Create self.dropout layer using nn.Dropout
|
86 |
+
# YOUR CODE STARTS HERE (our implementation is about 5-8 lines)
|
87 |
+
|
88 |
+
self.self_attention = MultiHeadAttention(
|
89 |
+
input_size=hidden,
|
90 |
+
hidden=hidden,
|
91 |
+
num_heads=num_heads,
|
92 |
+
causal=True,
|
93 |
+
)
|
94 |
+
|
95 |
+
self.cross_attention = MultiHeadAttention(
|
96 |
+
input_size=hidden,
|
97 |
+
hidden=hidden,
|
98 |
+
num_heads=num_heads,
|
99 |
+
causal=False,
|
100 |
+
)
|
101 |
+
|
102 |
+
self.self_att_layer_norm = nn.LayerNorm(hidden)
|
103 |
+
self.cross_att_layer_norm = nn.LayerNorm(hidden)
|
104 |
+
|
105 |
+
self.fcn = nn.Sequential(
|
106 |
+
nn.Linear(hidden, fcn_hidden),
|
107 |
+
nn.ReLU(),
|
108 |
+
nn.Linear(fcn_hidden, hidden),
|
109 |
+
)
|
110 |
+
self.fcn_layer_norm = nn.LayerNorm(hidden)
|
111 |
+
self.dropout = nn.Dropout(dropout)
|
112 |
+
|
113 |
+
# YOUR CODE ENDS HERE
|
114 |
+
|
115 |
+
def forward(self, decoder_hidden_states, encoder_hidden_states, key_padding_mask=None):
|
116 |
+
"""Transformer Decoder Layer
|
117 |
+
|
118 |
+
Args:
|
119 |
+
decoder_hidden_states: FloatTensor[batch_size, query_seq_len, hidden]
|
120 |
+
encoder_hidden_states: FloatTensor[batch_size, kv_seq_len, hidden]
|
121 |
+
key_padding_mask: ByteTensor[batch_size, kv_seq_len] with 1 for padded tokens and 0 for regular tokens
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
FloatTensor[batch_size, query_seq_len, hidden]
|
125 |
+
"""
|
126 |
+
|
127 |
+
# Task 2.2 (1 point)
|
128 |
+
# Implement Transformer decoder block
|
129 |
+
# Remember that transformer decoder block is composed of:
|
130 |
+
# 1. Self-Attention
|
131 |
+
# 2. Residual connection
|
132 |
+
# 3. LayerNorm
|
133 |
+
# 4. Cross-Attention
|
134 |
+
# 5. Residual connection
|
135 |
+
# 6. LayerNorm
|
136 |
+
# 7. Fully-Connected Layer
|
137 |
+
# 8. Dropout
|
138 |
+
# 9. Residual connection
|
139 |
+
# 10. LayerNorm
|
140 |
+
# Note : Please write shape of the tensor for each line of code
|
141 |
+
# YOUR CODE STARTS HERE (our implementation is about 10 lines)
|
142 |
+
# print('calling decode', "decoder hidden states:",decoder_hidden_states.shape, 'encoder_hidden_states:',encoder_hidden_states.shape, "key_oadding:",key_padding_mask.shape)
|
143 |
+
residual_1 = decoder_hidden_states
|
144 |
+
# print("calling_self attention for decoder")
|
145 |
+
out = self.self_attention(decoder_hidden_states, key_padding_mask=None)
|
146 |
+
out = self.self_att_layer_norm(residual_1 + out)
|
147 |
+
residual_2 = out
|
148 |
+
# print("calling_cross attention for decoder")
|
149 |
+
out = self.cross_attention(q = out, kv = encoder_hidden_states, key_padding_mask = key_padding_mask)
|
150 |
+
# print("out after cross", out.shape)
|
151 |
+
# print('----')
|
152 |
+
out = self.cross_att_layer_norm(out+residual_2)
|
153 |
+
out = self.fcn(out)
|
154 |
+
out = self.dropout(out)
|
155 |
+
residual_3 = out
|
156 |
+
out = self.fcn_layer_norm(out+residual_3)
|
157 |
+
|
158 |
+
|
159 |
+
##YOUR CODE ENDS HERE##
|
160 |
+
return out
|
161 |
+
|
162 |
+
|
163 |
+
class TransfomerEncoderDecoderModel(nn.Module):
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
*,
|
167 |
+
num_layers,
|
168 |
+
hidden,
|
169 |
+
num_heads,
|
170 |
+
fcn_hidden,
|
171 |
+
max_seq_len,
|
172 |
+
src_vocab_size,
|
173 |
+
tgt_vocab_size,
|
174 |
+
dropout=0.1,
|
175 |
+
):
|
176 |
+
"""A minimal implementation of Transformer Encoder Decoder Model
|
177 |
+
|
178 |
+
Args:
|
179 |
+
num_layer: number of layers for encoder and decoder (in total, model will have 2 * num_layers layers)
|
180 |
+
hidden : embedding size and hidden size of attentions
|
181 |
+
fcn_hidden: hidden size of fully-connected networks inside transformer layers
|
182 |
+
vocab_size: size of vocabulary
|
183 |
+
max_seq_len: maximum length of input, target sequence whichever is higher number
|
184 |
+
src_vocab_size : source voacb size
|
185 |
+
tgt_vocab_size : target voab size
|
186 |
+
"""
|
187 |
+
super().__init__()
|
188 |
+
self.src_vocab_size = src_vocab_size
|
189 |
+
self.tgt_vocab_size = tgt_vocab_size
|
190 |
+
self.num_layers = num_layers
|
191 |
+
self.hidden = hidden
|
192 |
+
self.num_heads = num_heads
|
193 |
+
self.fcn_hidden = fcn_hidden
|
194 |
+
self.dropout_rate = dropout
|
195 |
+
self.max_seq_len = max_seq_len
|
196 |
+
|
197 |
+
# Task 2.3 (1 point)
|
198 |
+
# 1. Create encoder, decoder and positional embedding layer
|
199 |
+
# Use nn.Embedding for that and make sure to include source and target vocabulary size
|
200 |
+
# 2. Create a linear layer out_proj that will project contextualized representations
|
201 |
+
# of size hidden to your target vocabulary size.
|
202 |
+
# 3. Create a dropout layer
|
203 |
+
# YOUR CODE STARTS HERE (our implementation is about 5 lines)
|
204 |
+
|
205 |
+
self.encoder_embeddings = nn.Embedding(self.src_vocab_size, self.hidden)
|
206 |
+
self.decoder_embeddings = nn.Embedding(self.tgt_vocab_size, self.hidden)
|
207 |
+
self.positional_emb = nn.Embedding(self.max_seq_len, self.hidden)
|
208 |
+
|
209 |
+
self.out_proj = nn.Linear(self.hidden, self.tgt_vocab_size)
|
210 |
+
|
211 |
+
self.dropout = nn.Dropout(self.dropout_rate)
|
212 |
+
# YOUR CODE ENDS HERE
|
213 |
+
|
214 |
+
# Task 2.4 (1 point)
|
215 |
+
# 1. Create a list of encoder Layers
|
216 |
+
# 2. Create a list of decoder Layers
|
217 |
+
#
|
218 |
+
# Note that you need to wrap it with nn.ModuleList,
|
219 |
+
# so that the parameters of the layers would be counted as the paramertes of the model
|
220 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.ModuleList.html
|
221 |
+
# Read more about ModuleList here:
|
222 |
+
# https://github.com/FrancescoSaverioZuppichini/Pytorch-how-and-when-to-use-Module-Sequential-ModuleList-and-ModuleDict
|
223 |
+
# You can use for-loop of python list comprehension to create the list of layers
|
224 |
+
#
|
225 |
+
# YOUR CODE STARTS HERE (our implementation is 3-6 lines)
|
226 |
+
self.encoder_layers = nn.ModuleList([TransformerEncoderLayer(hidden = self.hidden,
|
227 |
+
num_heads = self.num_heads,
|
228 |
+
fcn_hidden = self.fcn_hidden,
|
229 |
+
dropout=self.dropout_rate
|
230 |
+
)
|
231 |
+
for _ in range(self.num_layers)
|
232 |
+
])
|
233 |
+
|
234 |
+
self.decoder_layers = nn.ModuleList([TransformerDecoderLayer(hidden = self.hidden,
|
235 |
+
num_heads = self.num_heads,
|
236 |
+
fcn_hidden = self.fcn_hidden,
|
237 |
+
dropout=self.dropout_rate
|
238 |
+
)
|
239 |
+
for _ in range(self.num_layers)
|
240 |
+
])
|
241 |
+
|
242 |
+
# YOUR CODE ENDS HERE
|
243 |
+
|
244 |
+
def _add_positions(self, sequence_tensor):
|
245 |
+
"""Adds positional embeddings to the input tensor.
|
246 |
+
Args:
|
247 |
+
sequence_tensor: FloatTensor[batch_size, seq_len, hidden]
|
248 |
+
"""
|
249 |
+
seq_len = sequence_tensor.shape[1]
|
250 |
+
positions = torch.arange(seq_len, device=sequence_tensor.device)
|
251 |
+
positional_emb = self.positional_emb(positions)
|
252 |
+
output = sequence_tensor + positional_emb
|
253 |
+
return output
|
254 |
+
|
255 |
+
def forward(
|
256 |
+
self,
|
257 |
+
input_ids=None,
|
258 |
+
encoder_hidden_states=None,
|
259 |
+
decoder_input_ids=None,
|
260 |
+
key_padding_mask=None,
|
261 |
+
):
|
262 |
+
"""
|
263 |
+
input_ids -> encoder_emb -> encoder ->
|
264 |
+
--> decoder(encoder_output, decoder_emb) -> logits
|
265 |
+
decoder_input_ids -> decoder_emb ---->
|
266 |
+
|
267 |
+
Model accepts either input_ids or encoder_hidden_states.
|
268 |
+
The former is used for training, the latter is used for inference, because during inference
|
269 |
+
we don't have the target sequence and want to forward the decoder multiple times.
|
270 |
+
To make the inference more efficient, we can only compute encoder output once and reuse it
|
271 |
+
for all decoder steps.
|
272 |
+
|
273 |
+
Meaning during training you should forward the model like this:
|
274 |
+
model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
275 |
+
|
276 |
+
but during inference (generating translation) you should forward the model like this:
|
277 |
+
model(encoder_hidden_states=encoder_hidden_states, decoder_input_ids=decoder_input_ids)
|
278 |
+
|
279 |
+
Args:
|
280 |
+
input_ids (LongTensor): Encoder input sequence of size (batch_size, seq_len)
|
281 |
+
encoder_hidden_states (FloatTensor): Encoder hidden states of size (batch_size, seq_len, hidden)
|
282 |
+
decoder_input_ids (LongTensor) : Decoder input sequence of size (batch_size, out_seq_len)
|
283 |
+
key_padding_mask (ByteTensor): Mask of size (batch_size, seq_len) where 1 means that the token is padding
|
284 |
+
|
285 |
+
Return:
|
286 |
+
logits (FloatTensor): Logits for output sequence of size (batch_size, out_seq_len, dec_vocab_size)
|
287 |
+
|
288 |
+
"""
|
289 |
+
if input_ids is None and encoder_hidden_states is None:
|
290 |
+
raise ValueError("You should provide either input_ids or encoder_hidden_states")
|
291 |
+
|
292 |
+
if encoder_hidden_states is None:
|
293 |
+
encoder_hidden_states = self._encode(input_ids, key_padding_mask)
|
294 |
+
|
295 |
+
logits = self._decode(encoder_hidden_states, decoder_input_ids, key_padding_mask)
|
296 |
+
# print("Targte vocab size", decoder_input_ids.shape)
|
297 |
+
# print("logits---------", logits.shape)
|
298 |
+
|
299 |
+
return logits
|
300 |
+
|
301 |
+
def _encode(self, input_ids, key_padding_mask):
|
302 |
+
# Task 2.5 (2 points)
|
303 |
+
# 1. Get source embeddings using self.encoder_embeddings
|
304 |
+
# 2. Add positional embedding to encoder embeddings using _add_positions
|
305 |
+
# 3. Pass source embeddings through the encoder layers, name them encoder_hidden_states
|
306 |
+
# 3a. Remember to use key_padding_mask to mask out padding tokens
|
307 |
+
# YOUR CODE STARTS HERE
|
308 |
+
encoder_hidden_states = self.encoder_embeddings(input_ids)
|
309 |
+
encoder_hidden_states = self._add_positions(encoder_hidden_states)
|
310 |
+
for l in self.encoder_layers:
|
311 |
+
encoder_hidden_states = l(encoder_hidden_states, key_padding_mask = key_padding_mask)
|
312 |
+
|
313 |
+
# YOUR CODE ENDS HERE
|
314 |
+
|
315 |
+
return encoder_hidden_states
|
316 |
+
|
317 |
+
def _decode(self, encoder_hidden_states, decoder_input_ids, key_padding_mask):
|
318 |
+
# TASK 2.6 (2 points)
|
319 |
+
# 1. Get decoder embeddings using self.decoder_embeddings
|
320 |
+
# 2. Add positional embedding to target embeddings using _add_positions
|
321 |
+
# 3.Use decoder embeddings and encoder_hidden_states for the decoder input
|
322 |
+
# (please use keyword arguments instead of positional arguments to minimize a chance of a bug)
|
323 |
+
# 3a. Remember to use key_padding_mask to mask out padding tokens for the encoder inputs
|
324 |
+
# 4. use self.out_proj to get output logits, a.k.a log-probabilies of the next translation tokens
|
325 |
+
# YOUR CODE STARTS HERE
|
326 |
+
decoder_embedding = self.decoder_embeddings(decoder_input_ids)
|
327 |
+
decoder_embedding = self._add_positions(decoder_embedding)
|
328 |
+
# print("decoder_Embedding", decoder_embedding.shape)
|
329 |
+
for l in self.decoder_layers:
|
330 |
+
decoder_embedding = l(decoder_hidden_states = decoder_embedding, encoder_hidden_states=encoder_hidden_states, key_padding_mask = key_padding_mask)
|
331 |
+
|
332 |
+
logits = self.out_proj(decoder_embedding)
|
333 |
+
## YOUR CODE ENDS HERE
|
334 |
+
return logits
|
335 |
+
|
336 |
+
##############################################################################
|
337 |
+
# Don't worry about any of the code below this line, but feel free to take a look
|
338 |
+
# if you are interested in generation or model saving/loading.
|
339 |
+
##############################################################################
|
340 |
+
@torch.inference_mode()
|
341 |
+
def generate(
|
342 |
+
self,
|
343 |
+
input_ids,
|
344 |
+
*,
|
345 |
+
bos_token_id,
|
346 |
+
eos_token_id,
|
347 |
+
pad_token_id=None,
|
348 |
+
key_padding_mask=None,
|
349 |
+
max_length=50,
|
350 |
+
beam_size=5,
|
351 |
+
kind="beam_search",
|
352 |
+
):
|
353 |
+
"""
|
354 |
+
Generate a translation given an input sequence.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
input_ids (LongTensor): Encoder input sequence of size (batch_size, seq_len)
|
358 |
+
bos_token_id (int): Beginning of sentence token id
|
359 |
+
eos_token_id (int): End of sentence token id
|
360 |
+
pad_token_id (int): Padding token id, required if doing beam search
|
361 |
+
key_padding_mask (ByteTensor): Mask of size (batch_size, seq_len) where 1 means that the token is padding
|
362 |
+
max_length (int): Maximum length of the generated sequence
|
363 |
+
beam_size (int): Beam size for beam search
|
364 |
+
kind (str): Can be either "greedy" or "beam_search"
|
365 |
+
|
366 |
+
Return:
|
367 |
+
decoded_ids (LongTensor): Decoder output sequence of size (batch_size, seq_len)
|
368 |
+
"""
|
369 |
+
if kind not in ["greedy", "beam_search"]:
|
370 |
+
raise ValueError("Unknown kind of generation: {}".format(kind))
|
371 |
+
if kind == "beam_search" and pad_token_id is None:
|
372 |
+
raise ValueError("Beam search requires a pad_token_id to be provided")
|
373 |
+
|
374 |
+
if kind == "greedy":
|
375 |
+
return self._generate_greedy(
|
376 |
+
input_ids=input_ids,
|
377 |
+
bos_token_id=bos_token_id,
|
378 |
+
eos_token_id=eos_token_id,
|
379 |
+
key_padding_mask=key_padding_mask,
|
380 |
+
max_length=max_length,
|
381 |
+
)
|
382 |
+
|
383 |
+
# beam search only supports batch size 1
|
384 |
+
beam_search_generations = []
|
385 |
+
for i in range(input_ids.size(0)):
|
386 |
+
_input_ids = input_ids[i].unsqueeze(0)
|
387 |
+
_key_padding_mask = key_padding_mask[i].unsqueeze(0) if key_padding_mask is not None else None
|
388 |
+
|
389 |
+
generated = self._generate_beam_search(
|
390 |
+
input_ids=_input_ids,
|
391 |
+
bos_token_id=bos_token_id,
|
392 |
+
eos_token_id=eos_token_id,
|
393 |
+
key_padding_mask=_key_padding_mask,
|
394 |
+
max_length=max_length,
|
395 |
+
beam_size=beam_size,
|
396 |
+
)
|
397 |
+
|
398 |
+
beam_search_generations.append(generated[0].detach().cpu().tolist())
|
399 |
+
|
400 |
+
return pad(beam_search_generations, pad_id=eos_token_id)
|
401 |
+
|
402 |
+
@torch.inference_mode()
|
403 |
+
def _generate_greedy(
|
404 |
+
self,
|
405 |
+
input_ids,
|
406 |
+
*,
|
407 |
+
bos_token_id,
|
408 |
+
eos_token_id,
|
409 |
+
key_padding_mask=None,
|
410 |
+
max_length=50,
|
411 |
+
):
|
412 |
+
"""
|
413 |
+
Greedy generation of translation. Selects most likely word on every step.
|
414 |
+
|
415 |
+
Args:
|
416 |
+
input_ids (LongTensor): Encoder input sequence of size (batch_size, seq_len)
|
417 |
+
max_length (int): Maximum length of the generated sequence
|
418 |
+
bos_token_id (int): Beginning of sentence token id
|
419 |
+
eos_token_id (int): End of sequence token id
|
420 |
+
|
421 |
+
Return:
|
422 |
+
translation (LongTensor): Decoder output sequence of size (batch_size, out_seq_len)
|
423 |
+
where out_seq_len <= max_length
|
424 |
+
"""
|
425 |
+
encoder_hidden_states = self._encode(input_ids, key_padding_mask)
|
426 |
+
|
427 |
+
decoder_input_ids = torch.full((input_ids.shape[0], 1), bos_token_id, dtype=torch.long, device=input_ids.device)
|
428 |
+
translation = torch.zeros((input_ids.shape[0], 0), dtype=torch.long, device=input_ids.device)
|
429 |
+
|
430 |
+
eos_flags = torch.zeros((input_ids.shape[0],), dtype=torch.uint8, device=input_ids.device)
|
431 |
+
|
432 |
+
for _ in range(max_length):
|
433 |
+
logits = self._decode(encoder_hidden_states, decoder_input_ids, key_padding_mask)
|
434 |
+
logits = logits[:, -1, :]
|
435 |
+
|
436 |
+
next_token_id = torch.argmax(logits, dim=-1)
|
437 |
+
|
438 |
+
decoder_input_ids = torch.cat((decoder_input_ids, next_token_id.unsqueeze(1)), dim=1)
|
439 |
+
translation = torch.cat((translation, next_token_id.unsqueeze(1)), dim=1)
|
440 |
+
|
441 |
+
eos_flags |= (next_token_id == eos_token_id)
|
442 |
+
|
443 |
+
if eos_flags.all():
|
444 |
+
break
|
445 |
+
|
446 |
+
return translation
|
447 |
+
|
448 |
+
@torch.inference_mode()
|
449 |
+
def _generate_beam_search(
|
450 |
+
self,
|
451 |
+
input_ids,
|
452 |
+
*,
|
453 |
+
bos_token_id,
|
454 |
+
eos_token_id,
|
455 |
+
key_padding_mask=None,
|
456 |
+
beam_size=5,
|
457 |
+
max_length=50,
|
458 |
+
):
|
459 |
+
"""
|
460 |
+
Beam search generation of translation.
|
461 |
+
Heavily inspired by https://github.com/pcyin/pytorch_basic_nmt
|
462 |
+
|
463 |
+
Args:
|
464 |
+
input_ids (LongTensor): Encoder input sequence of size (batch_size, seq_len)
|
465 |
+
max_length (int): Maximum length of the generated sequence
|
466 |
+
bos_token_id (int): Beginning of sentence token id
|
467 |
+
eos_token_id (int): End of sequence token id
|
468 |
+
|
469 |
+
Return:
|
470 |
+
translation (LongTensor): Decoder output sequence of size (batch_size, out_seq_len)
|
471 |
+
where out_seq_len <= max_length
|
472 |
+
"""
|
473 |
+
assert len(input_ids) == 1, "Beam search is only supported for a single input sequence"
|
474 |
+
encoder_hidden_states = self._encode(input_ids, key_padding_mask)
|
475 |
+
device = input_ids.device
|
476 |
+
|
477 |
+
hypotheses = [[bos_token_id]]
|
478 |
+
hyp_scores = torch.zeros(len(hypotheses), dtype=torch.float, device=device)
|
479 |
+
completed_hypotheses = []
|
480 |
+
|
481 |
+
for _ in range(max_length):
|
482 |
+
if len(completed_hypotheses) >= beam_size:
|
483 |
+
break
|
484 |
+
|
485 |
+
hyp_num = len(hypotheses)
|
486 |
+
expanded_encoder_hidden_states = encoder_hidden_states.expand(
|
487 |
+
hyp_num,
|
488 |
+
encoder_hidden_states.size(1),
|
489 |
+
encoder_hidden_states.size(2),
|
490 |
+
)
|
491 |
+
|
492 |
+
# [batch_size*hyp_num=1*hyp_num, seq_len, hidden]
|
493 |
+
hypotheses_tensor = torch.tensor(hypotheses, dtype=torch.int64, device=device)
|
494 |
+
logits = self._decode(expanded_encoder_hidden_states, hypotheses_tensor, key_padding_mask)
|
495 |
+
logits = logits[:, -1, :] # [vocab_size]
|
496 |
+
|
497 |
+
log_p_t = F.log_softmax(logits, dim=-1)
|
498 |
+
live_hyp_num = beam_size - len(completed_hypotheses)
|
499 |
+
|
500 |
+
# [hyp_num] -> [1, hyp_num] -> [hyp_num, vocab_size] -> [hyp_num * vocab_size]
|
501 |
+
new_hyp_scores = (hyp_scores.unsqueeze(1).expand_as(log_p_t) + log_p_t).view(-1)
|
502 |
+
# [live_hyp_num], [live_hyp_num]
|
503 |
+
# for indices, the values range from 0 to hyp_num * vocab_size
|
504 |
+
top_new_hyp_scores, top_new_hyp_pos = torch.topk(new_hyp_scores, k=live_hyp_num)
|
505 |
+
|
506 |
+
# hypotheses ids in hyp_scores tensor [hyp_num,]
|
507 |
+
prev_hyp_ids = torch.div(top_new_hyp_pos, self.tgt_vocab_size, rounding_mode='floor')
|
508 |
+
|
509 |
+
# ids of the next words for each hypothesis
|
510 |
+
token_ids = top_new_hyp_pos % self.tgt_vocab_size
|
511 |
+
|
512 |
+
new_hypotheses = []
|
513 |
+
new_hyp_scores = []
|
514 |
+
|
515 |
+
# iterate live_hyp_num times
|
516 |
+
for prev_hyp_id, hyp_token_id, cand_new_hyp_score in zip(prev_hyp_ids, token_ids, top_new_hyp_scores):
|
517 |
+
prev_hyp_id = prev_hyp_id.item()
|
518 |
+
hyp_token_id = hyp_token_id.item()
|
519 |
+
cand_new_hyp_score = cand_new_hyp_score.item()
|
520 |
+
|
521 |
+
new_hyp_sent = hypotheses[prev_hyp_id] + [hyp_token_id]
|
522 |
+
if hyp_token_id == eos_token_id:
|
523 |
+
completed_hypotheses.append(Hypothesis(value=new_hyp_sent[1:-1], score=cand_new_hyp_score))
|
524 |
+
else:
|
525 |
+
new_hypotheses.append(new_hyp_sent)
|
526 |
+
new_hyp_scores.append(cand_new_hyp_score)
|
527 |
+
|
528 |
+
if len(completed_hypotheses) == beam_size:
|
529 |
+
break
|
530 |
+
|
531 |
+
hypotheses = new_hypotheses
|
532 |
+
hyp_scores = torch.tensor(new_hyp_scores, dtype=torch.float, device=device)
|
533 |
+
|
534 |
+
if len(completed_hypotheses) == 0:
|
535 |
+
completed_hypotheses.append(Hypothesis(value=hypotheses[0][1:], score=hyp_scores[0].item()))
|
536 |
+
|
537 |
+
completed_hypotheses.sort(key=lambda hyp: hyp.score, reverse=True)
|
538 |
+
return torch.LongTensor(completed_hypotheses[0].value).unsqueeze(0)
|
539 |
+
|
540 |
+
def save_pretrained(self, save_path):
|
541 |
+
"""Save the model weights to a directory
|
542 |
+
|
543 |
+
Args:
|
544 |
+
save_path: directory to save the model
|
545 |
+
"""
|
546 |
+
config = {
|
547 |
+
"num_layers": self.num_layers,
|
548 |
+
"hidden": self.hidden,
|
549 |
+
"num_heads": self.num_heads,
|
550 |
+
"fcn_hidden": self.fcn_hidden,
|
551 |
+
"src_vocab_size": self.src_vocab_size,
|
552 |
+
"tgt_vocab_size": self.tgt_vocab_size,
|
553 |
+
"max_seq_len": self.max_seq_len,
|
554 |
+
"dropout": self.dropout_rate,
|
555 |
+
}
|
556 |
+
|
557 |
+
with open(os.path.join(save_path, "model_config.json"), "w") as f:
|
558 |
+
json.dump(config, f)
|
559 |
+
|
560 |
+
state_dict = self.state_dict()
|
561 |
+
torch.save(state_dict, os.path.join(save_path, "model.pt"))
|
562 |
+
|
563 |
+
@classmethod
|
564 |
+
def from_pretrained(cls, save_path, map_location=None):
|
565 |
+
"""Load the model weights from a directory
|
566 |
+
|
567 |
+
Args:
|
568 |
+
save_path: directory to load the model
|
569 |
+
"""
|
570 |
+
if map_location is None and not torch.cuda.is_available():
|
571 |
+
map_location = "cpu"
|
572 |
+
|
573 |
+
with open(os.path.join(save_path, "model_config.json"), "r") as f:
|
574 |
+
config = json.load(f)
|
575 |
+
|
576 |
+
model = cls(**config)
|
577 |
+
state_dict = torch.load(os.path.join(save_path, "model.pt"), map_location=map_location)
|
578 |
+
model.load_state_dict(state_dict)
|
579 |
+
return model
|
transformer_mt/utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def postprocess_text(preds, labels):
|
7 |
+
"""Use this function to postprocess generations and labels before BLEU computation."""
|
8 |
+
preds = [pred.strip() for pred in preds]
|
9 |
+
labels = [[label.strip()] for label in labels]
|
10 |
+
|
11 |
+
return preds, labels
|
12 |
+
|
13 |
+
|
14 |
+
def pad(sequence_list, pad_id):
|
15 |
+
"""Pads sequence_list to the longest sequence in the batch with pad_id.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
sequence_list: a list of size batch_size of numpy arrays of different length
|
19 |
+
pad_id: int, a pad token id
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
torch.LongTensor of shape [batch_size, max_sequence_len]
|
23 |
+
"""
|
24 |
+
max_len = max(len(x) for x in sequence_list)
|
25 |
+
padded_sequence_list = []
|
26 |
+
for sequence in sequence_list:
|
27 |
+
padding = [pad_id] * (max_len - len(sequence))
|
28 |
+
padded_sequence = sequence + padding
|
29 |
+
padded_sequence_list.append(padded_sequence)
|
30 |
+
|
31 |
+
return torch.LongTensor(padded_sequence_list)
|
32 |
+
|
33 |
+
|
34 |
+
def sample_small_debug_dataset(raw_datasets):
|
35 |
+
random_indices = random.sample(list(range(len(raw_datasets["train"]))), 100)
|
36 |
+
subset = raw_datasets["train"].select(random_indices)
|
37 |
+
raw_datasets["train"] = deepcopy(subset)
|
38 |
+
if "validation" in raw_datasets:
|
39 |
+
raw_datasets["validation"] = deepcopy(subset)
|
40 |
+
if "test" in raw_datasets:
|
41 |
+
raw_datasets["test"] = deepcopy(subset)
|
42 |
+
return raw_datasets
|
transformer_mt_roberta/__init__.py
ADDED
File without changes
|
transformer_mt_roberta/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (168 Bytes). View file
|
|
transformer_mt_roberta/__pycache__/modeling_attention.cpython-37.pyc
ADDED
Binary file (2.96 kB). View file
|
|
transformer_mt_roberta/__pycache__/modeling_transformer.cpython-37.pyc
ADDED
Binary file (11.4 kB). View file
|
|
transformer_mt_roberta/__pycache__/modeling_transformer_final.cpython-37.pyc
ADDED
Binary file (8.15 kB). View file
|
|
transformer_mt_roberta/__pycache__/utils.cpython-37.pyc
ADDED
Binary file (1.79 kB). View file
|
|
transformer_mt_roberta/modeling_attention.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 Vladislav Lialin and Namrata Shivagunde
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
#i Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
|
21 |
+
class MultiHeadAttention(nn.Module):
|
22 |
+
def __init__(self, input_size, hidden, num_heads, causal=False):
|
23 |
+
"""Multi-head attention module which computes [softmax(xQ_h @ xK_h^T) @ xV: ...] @ U
|
24 |
+
|
25 |
+
Can work as both self-attention or cross-attention (if kv is provided to .forward).
|
26 |
+
|
27 |
+
Args:
|
28 |
+
causal: use causal masking (do not allow target to look to the future or current token of source)
|
29 |
+
"""
|
30 |
+
if hidden % num_heads:
|
31 |
+
raise ValueError(f"hidden should be divisible by num_heads, "
|
32 |
+
f"but got hidden={hidden} and num_heads={num_heads}")
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.k = nn.Linear(input_size, hidden)
|
36 |
+
self.q = nn.Linear(input_size, hidden)
|
37 |
+
self.v = nn.Linear(input_size, hidden)
|
38 |
+
self.mix = nn.Linear(hidden, hidden)
|
39 |
+
|
40 |
+
self.num_heads = num_heads
|
41 |
+
self.head_size = hidden // num_heads
|
42 |
+
self.scale = self.head_size ** 0.5
|
43 |
+
self.causal = causal # causal masking
|
44 |
+
|
45 |
+
def forward(self, q, kv=None, key_padding_mask=None, return_attention=False):
|
46 |
+
"""[Softmax(source Q_1 @ target K_1^T) @ target V_1 : ... ) @ x V_heads] @ U
|
47 |
+
|
48 |
+
Performs self-attention if kv is not specified.
|
49 |
+
In this case, kv = q and kv_seq_len = query_seq_len.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
q: FloatTensor[batch_size, query_seq_len, input_size]
|
53 |
+
kv (target) : optional, FloatTensor[batch_size, kv_seq_len, input_size]
|
54 |
+
key_padding_mask: BoolTensor[batch_size, kv_seq_len] 0 means unpadded, 1 means padded
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
FloatTensor[batch_size, seq_len, hidden]
|
58 |
+
"""
|
59 |
+
|
60 |
+
# Task 1.1 (1 point)
|
61 |
+
# Update this function with cross-attention mechanism
|
62 |
+
# If target is None, then target (kv) and source (q) will be same.
|
63 |
+
# Define k, q, v using self.k, self.q and self.v based on if the target exists or not
|
64 |
+
# Note : Please write shape of each tensor for each line of code
|
65 |
+
## YOUR CODE STARTS HERE## ~ 2 lines code
|
66 |
+
k = self.k(kv) if kv!=None else self.k(q)
|
67 |
+
# print('k', k.shape, 'q', q.shape)
|
68 |
+
q = self.q(q)
|
69 |
+
v = self.v(kv) if kv!=None else self.v(q)
|
70 |
+
# print("KV", kv)
|
71 |
+
|
72 |
+
# YOUR CODE ENDS HERE
|
73 |
+
|
74 |
+
bs, attending_seq, _ = q.shape
|
75 |
+
attended_seq = k.shape[1]
|
76 |
+
|
77 |
+
# [b, s, h] -> [b, h, s] -> [b * heads, h / heads, s] -> [b * heads, s, h / heads]
|
78 |
+
k = k.transpose(1, 2).reshape(bs * self.num_heads, self.head_size, -1).transpose(1, 2).contiguous() # [batch * num_heads, seq, hidden / num_heads]
|
79 |
+
q = q.transpose(1, 2).reshape(bs * self.num_heads, self.head_size, -1).transpose(1, 2).contiguous()
|
80 |
+
v = v.transpose(1, 2).reshape(bs * self.num_heads, self.head_size, -1).transpose(1, 2).contiguous()
|
81 |
+
|
82 |
+
scores = q @ k.transpose(1, 2) / self.scale # [batch * num_heads, attending_seq, attended_seq]
|
83 |
+
assert scores.shape == (bs * self.num_heads, attending_seq, attended_seq)
|
84 |
+
|
85 |
+
|
86 |
+
if key_padding_mask is not None:
|
87 |
+
# Task 1.2 (1 point)
|
88 |
+
# Padding
|
89 |
+
# Set the scores corresponding to padded positions (key_padding_mask == 1) to -inf
|
90 |
+
#
|
91 |
+
# You might need to reshape the scores to [batch_size, seq_len, seq_len]
|
92 |
+
# in this case, remember to reshape them back
|
93 |
+
# Our implementation is 3 lines
|
94 |
+
# YOUR CODE STARTS HERE
|
95 |
+
# print(scores.shape, key_padding_mask.unsqueeze(-2).shape)
|
96 |
+
|
97 |
+
|
98 |
+
scores = scores.reshape(self.num_heads, bs, attending_seq, attended_seq)
|
99 |
+
scores_check = scores.reshape(bs, self.num_heads, attending_seq, -1)
|
100 |
+
# print("Socres:", scores.shape, "Scores_Check:", scores_check.shape)
|
101 |
+
# print('----')
|
102 |
+
scores = scores.masked_fill(key_padding_mask.unsqueeze(-2)==1, value = float("-inf"))
|
103 |
+
scores = scores.view(bs * self.num_heads, attending_seq, attended_seq)
|
104 |
+
|
105 |
+
|
106 |
+
# YOUR CODE ENDS HERE
|
107 |
+
|
108 |
+
assert scores.size() == (bs * self.num_heads, attending_seq, attended_seq),\
|
109 |
+
f"scores have wrong shape. Expected {(bs * self.num_heads, attending_seq, attended_seq)}, got {scores.size()}"
|
110 |
+
|
111 |
+
if self.causal:
|
112 |
+
causal_mask = torch.triu(torch.ones(attending_seq, attended_seq, dtype=torch.bool, device=scores.device), diagonal=1)
|
113 |
+
scores.masked_fill_(causal_mask.bool().unsqueeze(0), float("-inf"))
|
114 |
+
|
115 |
+
probs = torch.softmax(scores, dim=-1) # [batch * num_heads, tgt_seq, src_seq]
|
116 |
+
att = probs @ v # [batch * num_heads, tgt_seq, hidden / num_heads]
|
117 |
+
|
118 |
+
# [b * heads, s, h / heads] -> [b * heads, h / heads, s] -> [b, h, s] -> [b, s, h]
|
119 |
+
att = att.transpose(1, 2).reshape(bs, -1, attending_seq).transpose(1, 2).contiguous()
|
120 |
+
|
121 |
+
att = self.mix(att)
|
122 |
+
|
123 |
+
if return_attention:
|
124 |
+
return att, probs
|
125 |
+
|
126 |
+
return att
|
transformer_mt_roberta/modeling_transformer_final.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from collections import namedtuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from transformer_mt.modeling_attention import MultiHeadAttention
|
10 |
+
from transformer_mt.utils import pad
|
11 |
+
from transformers import AutoTokenizer, AutoModelForMaskedML
|
12 |
+
|
13 |
+
Hypothesis = namedtuple("Hypothesis", ["value", "score"])
|
14 |
+
|
15 |
+
class TransformerDecoderLayer(nn.Module):
|
16 |
+
def __init__(self, hidden, num_heads, fcn_hidden, dropout=0.0):
|
17 |
+
super().__init__()
|
18 |
+
|
19 |
+
|
20 |
+
self.self_attention = MultiHeadAttention(
|
21 |
+
input_size=hidden,
|
22 |
+
hidden=hidden,
|
23 |
+
num_heads=num_heads,
|
24 |
+
causal=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
self.cross_attention = MultiHeadAttention(
|
28 |
+
input_size=hidden,
|
29 |
+
hidden=hidden,
|
30 |
+
num_heads=num_heads,
|
31 |
+
causal=False,
|
32 |
+
)
|
33 |
+
|
34 |
+
self.self_att_layer_norm = nn.LayerNorm(hidden)
|
35 |
+
self.cross_att_layer_norm = nn.LayerNorm(hidden)
|
36 |
+
|
37 |
+
self.fcn = nn.Sequential(
|
38 |
+
nn.Linear(hidden, fcn_hidden),
|
39 |
+
nn.ReLU(),
|
40 |
+
nn.Linear(fcn_hidden, hidden),
|
41 |
+
)
|
42 |
+
self.fcn_layer_norm = nn.LayerNorm(hidden)
|
43 |
+
self.dropout = nn.Dropout(dropout)
|
44 |
+
|
45 |
+
# YOUR CODE ENDS HERE
|
46 |
+
|
47 |
+
def forward(self, decoder_hidden_states, encoder_hidden_states, key_padding_mask=None):
|
48 |
+
|
49 |
+
residual_1 = decoder_hidden_states
|
50 |
+
out = self.self_attention(decoder_hidden_states, key_padding_mask=None)
|
51 |
+
out = self.self_att_layer_norm(residual_1 + out)
|
52 |
+
residual_2 = out
|
53 |
+
out = self.cross_attention(q = out, kv = encoder_hidden_states, key_padding_mask = key_padding_mask)
|
54 |
+
|
55 |
+
out = self.cross_att_layer_norm(out+residual_2)
|
56 |
+
out = self.fcn(out)
|
57 |
+
out = self.dropout(out)
|
58 |
+
residual_3 = out
|
59 |
+
out = self.fcn_layer_norm(out+residual_3)
|
60 |
+
|
61 |
+
return out
|
62 |
+
|
63 |
+
|
64 |
+
class TransfomerEncoderDecoderModel(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
*,
|
68 |
+
num_layers,
|
69 |
+
hidden,
|
70 |
+
num_heads,
|
71 |
+
fcn_hidden,
|
72 |
+
max_seq_len,
|
73 |
+
src_vocab_size,
|
74 |
+
tgt_vocab_size,
|
75 |
+
dropout=0.1,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
self.src_vocab_size = src_vocab_size
|
79 |
+
self.tgt_vocab_size = tgt_vocab_size
|
80 |
+
self.num_layers = num_layers
|
81 |
+
self.hidden = hidden
|
82 |
+
self.num_heads = num_heads
|
83 |
+
self.fcn_hidden = fcn_hidden
|
84 |
+
self.dropout_rate = dropout
|
85 |
+
self.max_seq_len = max_seq_len
|
86 |
+
|
87 |
+
self.decoder_embeddings = nn.Embedding(self.tgt_vocab_size, self.hidden)
|
88 |
+
self.positional_emb = nn.Embedding(self.max_seq_len, self.hidden)
|
89 |
+
|
90 |
+
self.out_proj = nn.Linear(self.hidden, self.tgt_vocab_size)
|
91 |
+
|
92 |
+
self.dropout = nn.Dropout(self.dropout_rate)
|
93 |
+
|
94 |
+
self.encoder = AutoModelForMaskedML.from_pretrained("flax-community/roberta_base_danish", output_hidden_states=True)
|
95 |
+
|
96 |
+
self.decoder_layers = nn.ModuleList([TransformerDecoderLayer(hidden = self.hidden,
|
97 |
+
num_heads = self.num_heads,
|
98 |
+
fcn_hidden = self.fcn_hidden,
|
99 |
+
dropout=self.dropout_rate
|
100 |
+
)
|
101 |
+
for _ in range(self.num_layers)
|
102 |
+
])
|
103 |
+
|
104 |
+
# YOUR CODE ENDS HERE
|
105 |
+
|
106 |
+
def _add_positions(self, sequence_tensor):
|
107 |
+
|
108 |
+
seq_len = sequence_tensor.shape[1]
|
109 |
+
positions = torch.arange(seq_len, device=sequence_tensor.device)
|
110 |
+
positional_emb = self.positional_emb(positions)
|
111 |
+
output = sequence_tensor + positional_emb
|
112 |
+
return output
|
113 |
+
|
114 |
+
def forward(
|
115 |
+
self,
|
116 |
+
input_ids=None,
|
117 |
+
encoder_hidden_states=None,
|
118 |
+
decoder_input_ids=None,
|
119 |
+
key_padding_mask=None,
|
120 |
+
):
|
121 |
+
|
122 |
+
if input_ids is None and encoder_hidden_states is None:
|
123 |
+
raise ValueError("You should provide either input_ids or encoder_hidden_states")
|
124 |
+
|
125 |
+
if encoder_hidden_states is None:
|
126 |
+
encoder_hidden_states = self.encoder(input_ids, output_hidden_states=True)
|
127 |
+
encoder_hidden_states = encoder_hidden_states.hidden_states[-1]
|
128 |
+
# print( encoder_hidden_states.shape)
|
129 |
+
|
130 |
+
logits = self._decode(encoder_hidden_states, decoder_input_ids, key_padding_mask)
|
131 |
+
# print(logits.shape)
|
132 |
+
|
133 |
+
|
134 |
+
return logits
|
135 |
+
|
136 |
+
def _decode(self, encoder_hidden_states, decoder_input_ids, key_padding_mask):
|
137 |
+
|
138 |
+
decoder_embedding = self.decoder_embeddings(decoder_input_ids)
|
139 |
+
decoder_embedding = self._add_positions(decoder_embedding)
|
140 |
+
|
141 |
+
for l in self.decoder_layers:
|
142 |
+
decoder_embedding = l(decoder_hidden_states = decoder_embedding, encoder_hidden_states=encoder_hidden_states, key_padding_mask = key_padding_mask)
|
143 |
+
|
144 |
+
logits = self.out_proj(decoder_embedding)
|
145 |
+
## YOUR CODE ENDS HERE
|
146 |
+
return logits
|
147 |
+
|
148 |
+
|
149 |
+
@torch.inference_mode()
|
150 |
+
def generate(
|
151 |
+
self,
|
152 |
+
input_ids,
|
153 |
+
*,
|
154 |
+
bos_token_id,
|
155 |
+
eos_token_id,
|
156 |
+
pad_token_id=None,
|
157 |
+
key_padding_mask=None,
|
158 |
+
max_length=50,
|
159 |
+
beam_size=5,
|
160 |
+
kind="beam_search",
|
161 |
+
):
|
162 |
+
|
163 |
+
if kind not in ["greedy", "beam_search"]:
|
164 |
+
raise ValueError("Unknown kind of generation: {}".format(kind))
|
165 |
+
if kind == "beam_search" and pad_token_id is None:
|
166 |
+
raise ValueError("Beam search requires a pad_token_id to be provided")
|
167 |
+
|
168 |
+
if kind == "greedy":
|
169 |
+
return self._generate_greedy(
|
170 |
+
input_ids=input_ids,
|
171 |
+
bos_token_id=bos_token_id,
|
172 |
+
eos_token_id=eos_token_id,
|
173 |
+
key_padding_mask=key_padding_mask,
|
174 |
+
max_length=max_length,
|
175 |
+
)
|
176 |
+
|
177 |
+
# beam search only supports batch size 1
|
178 |
+
beam_search_generations = []
|
179 |
+
for i in range(input_ids.size(0)):
|
180 |
+
_input_ids = input_ids[i].unsqueeze(0)
|
181 |
+
_key_padding_mask = key_padding_mask[i].unsqueeze(0) if key_padding_mask is not None else None
|
182 |
+
|
183 |
+
generated = self._generate_beam_search(
|
184 |
+
input_ids=_input_ids,
|
185 |
+
bos_token_id=bos_token_id,
|
186 |
+
eos_token_id=eos_token_id,
|
187 |
+
key_padding_mask=_key_padding_mask,
|
188 |
+
max_length=max_length,
|
189 |
+
beam_size=beam_size,
|
190 |
+
)
|
191 |
+
|
192 |
+
beam_search_generations.append(generated[0].detach().cpu().tolist())
|
193 |
+
|
194 |
+
return pad(beam_search_generations, pad_id=eos_token_id)
|
195 |
+
|
196 |
+
@torch.inference_mode()
|
197 |
+
def _generate_greedy(
|
198 |
+
self,
|
199 |
+
input_ids,
|
200 |
+
*,
|
201 |
+
bos_token_id,
|
202 |
+
eos_token_id,
|
203 |
+
key_padding_mask=None,
|
204 |
+
max_length=50,
|
205 |
+
):
|
206 |
+
|
207 |
+
# encoder_hidden_states = self._encode(input_ids, key_padding_mask)
|
208 |
+
encoder_hidden_states = self.encoder(input_ids, output_hidden_states=True, attention_mask=key_padding_mask)
|
209 |
+
encoder_hidden_states = encoder_hidden_states.hidden_states[-1]
|
210 |
+
|
211 |
+
|
212 |
+
decoder_input_ids = torch.full((input_ids.shape[0], 1), bos_token_id, dtype=torch.long, device=input_ids.device)
|
213 |
+
translation = torch.zeros((input_ids.shape[0], 0), dtype=torch.long, device=input_ids.device)
|
214 |
+
|
215 |
+
eos_flags = torch.zeros((input_ids.shape[0],), dtype=torch.uint8, device=input_ids.device)
|
216 |
+
|
217 |
+
for _ in range(max_length):
|
218 |
+
logits = self._decode(encoder_hidden_states, decoder_input_ids, key_padding_mask)
|
219 |
+
logits = logits[:, -1, :]
|
220 |
+
|
221 |
+
next_token_id = torch.argmax(logits, dim=-1)
|
222 |
+
|
223 |
+
decoder_input_ids = torch.cat((decoder_input_ids, next_token_id.unsqueeze(1)), dim=1)
|
224 |
+
translation = torch.cat((translation, next_token_id.unsqueeze(1)), dim=1)
|
225 |
+
|
226 |
+
eos_flags |= (next_token_id == eos_token_id)
|
227 |
+
|
228 |
+
if eos_flags.all():
|
229 |
+
break
|
230 |
+
|
231 |
+
return translation
|
232 |
+
|
233 |
+
@torch.inference_mode()
|
234 |
+
def _generate_beam_search(
|
235 |
+
self,
|
236 |
+
input_ids,
|
237 |
+
*,
|
238 |
+
bos_token_id,
|
239 |
+
eos_token_id,
|
240 |
+
key_padding_mask=None,
|
241 |
+
beam_size=5,
|
242 |
+
max_length=50,
|
243 |
+
):
|
244 |
+
|
245 |
+
assert len(input_ids) == 1, "Beam search is only supported for a single input sequence"
|
246 |
+
#encoder_hidden_states = self._encode(input_ids, key_padding_mask)
|
247 |
+
encoder_hidden_states = self.encoder(input_ids, output_hidden_states=True, attention_mask=key_padding_mask)
|
248 |
+
encoder_hidden_states = encoder_hidden_states.hidden_states[-1]
|
249 |
+
device = input_ids.device
|
250 |
+
|
251 |
+
hypotheses = [[bos_token_id]]
|
252 |
+
hyp_scores = torch.zeros(len(hypotheses), dtype=torch.float, device=device)
|
253 |
+
completed_hypotheses = []
|
254 |
+
|
255 |
+
for _ in range(max_length):
|
256 |
+
if len(completed_hypotheses) >= beam_size:
|
257 |
+
break
|
258 |
+
|
259 |
+
hyp_num = len(hypotheses)
|
260 |
+
expanded_encoder_hidden_states = encoder_hidden_states.expand(
|
261 |
+
hyp_num,
|
262 |
+
encoder_hidden_states.size(1),
|
263 |
+
encoder_hidden_states.size(2),
|
264 |
+
)
|
265 |
+
|
266 |
+
# [batch_size*hyp_num=1*hyp_num, seq_len, hidden]
|
267 |
+
hypotheses_tensor = torch.tensor(hypotheses, dtype=torch.int64, device=device)
|
268 |
+
logits = self._decode(expanded_encoder_hidden_states, hypotheses_tensor, key_padding_mask)
|
269 |
+
logits = logits[:, -1, :] # [vocab_size]
|
270 |
+
|
271 |
+
log_p_t = F.log_softmax(logits, dim=-1)
|
272 |
+
live_hyp_num = beam_size - len(completed_hypotheses)
|
273 |
+
|
274 |
+
# [hyp_num] -> [1, hyp_num] -> [hyp_num, vocab_size] -> [hyp_num * vocab_size]
|
275 |
+
new_hyp_scores = (hyp_scores.unsqueeze(1).expand_as(log_p_t) + log_p_t).view(-1)
|
276 |
+
# [live_hyp_num], [live_hyp_num]
|
277 |
+
# for indices, the values range from 0 to hyp_num * vocab_size
|
278 |
+
top_new_hyp_scores, top_new_hyp_pos = torch.topk(new_hyp_scores, k=live_hyp_num)
|
279 |
+
|
280 |
+
# hypotheses ids in hyp_scores tensor [hyp_num,]
|
281 |
+
prev_hyp_ids = torch.div(top_new_hyp_pos, self.tgt_vocab_size, rounding_mode='floor')
|
282 |
+
|
283 |
+
# ids of the next words for each hypothesis
|
284 |
+
token_ids = top_new_hyp_pos % self.tgt_vocab_size
|
285 |
+
|
286 |
+
new_hypotheses = []
|
287 |
+
new_hyp_scores = []
|
288 |
+
|
289 |
+
# iterate live_hyp_num times
|
290 |
+
for prev_hyp_id, hyp_token_id, cand_new_hyp_score in zip(prev_hyp_ids, token_ids, top_new_hyp_scores):
|
291 |
+
prev_hyp_id = prev_hyp_id.item()
|
292 |
+
hyp_token_id = hyp_token_id.item()
|
293 |
+
cand_new_hyp_score = cand_new_hyp_score.item()
|
294 |
+
|
295 |
+
new_hyp_sent = hypotheses[prev_hyp_id] + [hyp_token_id]
|
296 |
+
if hyp_token_id == eos_token_id:
|
297 |
+
completed_hypotheses.append(Hypothesis(value=new_hyp_sent[1:-1], score=cand_new_hyp_score))
|
298 |
+
else:
|
299 |
+
new_hypotheses.append(new_hyp_sent)
|
300 |
+
new_hyp_scores.append(cand_new_hyp_score)
|
301 |
+
|
302 |
+
if len(completed_hypotheses) == beam_size:
|
303 |
+
break
|
304 |
+
|
305 |
+
hypotheses = new_hypotheses
|
306 |
+
hyp_scores = torch.tensor(new_hyp_scores, dtype=torch.float, device=device)
|
307 |
+
|
308 |
+
if len(completed_hypotheses) == 0:
|
309 |
+
completed_hypotheses.append(Hypothesis(value=hypotheses[0][1:], score=hyp_scores[0].item()))
|
310 |
+
|
311 |
+
completed_hypotheses.sort(key=lambda hyp: hyp.score, reverse=True)
|
312 |
+
return torch.LongTensor(completed_hypotheses[0].value).unsqueeze(0)
|
313 |
+
|
314 |
+
def save_pretrained(self, save_path):
|
315 |
+
"""Save the model weights to a directory
|
316 |
+
|
317 |
+
Args:
|
318 |
+
save_path: directory to save the model
|
319 |
+
"""
|
320 |
+
config = {
|
321 |
+
"num_layers": self.num_layers,
|
322 |
+
"hidden": self.hidden,
|
323 |
+
"num_heads": self.num_heads,
|
324 |
+
"fcn_hidden": self.fcn_hidden,
|
325 |
+
"src_vocab_size": self.src_vocab_size,
|
326 |
+
"tgt_vocab_size": self.tgt_vocab_size,
|
327 |
+
"max_seq_len": self.max_seq_len,
|
328 |
+
"dropout": self.dropout_rate,
|
329 |
+
}
|
330 |
+
|
331 |
+
with open(os.path.join(save_path, "model_config.json"), "w") as f:
|
332 |
+
json.dump(config, f)
|
333 |
+
|
334 |
+
state_dict = self.state_dict()
|
335 |
+
torch.save(state_dict, os.path.join(save_path, "model.pt"))
|
336 |
+
|
337 |
+
@classmethod
|
338 |
+
def from_pretrained(cls, save_path, map_location=None):
|
339 |
+
"""Load the model weights from a directory
|
340 |
+
|
341 |
+
Args:
|
342 |
+
save_path: directory to load the model
|
343 |
+
"""
|
344 |
+
if map_location is None and not torch.cuda.is_available():
|
345 |
+
map_location = "cpu"
|
346 |
+
|
347 |
+
with open(os.path.join(save_path, "model_config.json"), "r") as f:
|
348 |
+
config = json.load(f)
|
349 |
+
|
350 |
+
model = cls(**config)
|
351 |
+
state_dict = torch.load(os.path.join(save_path, "model.pt"), map_location=map_location)
|
352 |
+
model.load_state_dict(state_dict)
|
353 |
+
return model
|
transformer_mt_roberta/utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
def postprocess_text(preds, labels):
|
7 |
+
"""Use this function to postprocess generations and labels before BLEU computation."""
|
8 |
+
preds = [pred.strip() for pred in preds]
|
9 |
+
labels = [[label.strip()] for label in labels]
|
10 |
+
|
11 |
+
return preds, labels
|
12 |
+
|
13 |
+
|
14 |
+
def pad(sequence_list, pad_id):
|
15 |
+
"""Pads sequence_list to the longest sequence in the batch with pad_id.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
sequence_list: a list of size batch_size of numpy arrays of different length
|
19 |
+
pad_id: int, a pad token id
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
torch.LongTensor of shape [batch_size, max_sequence_len]
|
23 |
+
"""
|
24 |
+
max_len = max(len(x) for x in sequence_list)
|
25 |
+
padded_sequence_list = []
|
26 |
+
for sequence in sequence_list:
|
27 |
+
padding = [pad_id] * (max_len - len(sequence))
|
28 |
+
padded_sequence = sequence + padding
|
29 |
+
padded_sequence_list.append(padded_sequence)
|
30 |
+
|
31 |
+
return torch.LongTensor(padded_sequence_list)
|
32 |
+
|
33 |
+
|
34 |
+
def sample_small_debug_dataset(raw_datasets):
|
35 |
+
random_indices = random.sample(list(range(len(raw_datasets["train"]))), 100)
|
36 |
+
subset = raw_datasets["train"].select(random_indices)
|
37 |
+
raw_datasets["train"] = deepcopy(subset)
|
38 |
+
if "validation" in raw_datasets:
|
39 |
+
raw_datasets["validation"] = deepcopy(subset)
|
40 |
+
if "test" in raw_datasets:
|
41 |
+
raw_datasets["test"] = deepcopy(subset)
|
42 |
+
return raw_datasets
|