Spaces:
Sleeping
Sleeping
Thomas
commited on
Commit
·
04e024e
1
Parent(s):
0014ea1
resample all audios to be on the sample SR
Browse files
notebooks/template-audio.ipynb
CHANGED
@@ -10,17 +10,20 @@
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
-
"execution_count":
|
14 |
"metadata": {},
|
15 |
"outputs": [],
|
16 |
"source": [
|
17 |
"from fastapi import APIRouter\n",
|
18 |
"from datetime import datetime\n",
|
19 |
"from datasets import load_dataset\n",
|
|
|
20 |
"from sklearn.metrics import accuracy_score\n",
|
21 |
"import random\n",
|
22 |
-
"\n",
|
|
|
23 |
"import sys\n",
|
|
|
24 |
"sys.path.append('../tasks')\n",
|
25 |
"\n",
|
26 |
"from utils.evaluation import AudioEvaluationRequest\n",
|
@@ -53,7 +56,7 @@
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
-
"execution_count":
|
57 |
"metadata": {},
|
58 |
"outputs": [],
|
59 |
"source": [
|
@@ -67,13 +70,68 @@
|
|
67 |
"test_dataset = train_test[\"test\"]"
|
68 |
]
|
69 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
{
|
71 |
"cell_type": "code",
|
72 |
"execution_count": null,
|
73 |
"metadata": {},
|
74 |
"outputs": [],
|
75 |
"source": [
|
76 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
]
|
78 |
},
|
79 |
{
|
@@ -108,6 +166,8 @@
|
|
108 |
"\n",
|
109 |
"# Make random predictions (placeholder for actual model inference)\n",
|
110 |
"true_labels = test_dataset[\"label\"]\n",
|
|
|
|
|
111 |
"predictions = [random.randint(0, 1) for _ in range(len(true_labels))]\n",
|
112 |
"\n",
|
113 |
"predictions\n",
|
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
+
"execution_count": 31,
|
14 |
"metadata": {},
|
15 |
"outputs": [],
|
16 |
"source": [
|
17 |
"from fastapi import APIRouter\n",
|
18 |
"from datetime import datetime\n",
|
19 |
"from datasets import load_dataset\n",
|
20 |
+
"import librosa\n",
|
21 |
"from sklearn.metrics import accuracy_score\n",
|
22 |
"import random\n",
|
23 |
+
"import pandas as pd\n",
|
24 |
+
"import numpy as np\n",
|
25 |
"import sys\n",
|
26 |
+
"import json\n",
|
27 |
"sys.path.append('../tasks')\n",
|
28 |
"\n",
|
29 |
"from utils.evaluation import AudioEvaluationRequest\n",
|
|
|
56 |
},
|
57 |
{
|
58 |
"cell_type": "code",
|
59 |
+
"execution_count": 2,
|
60 |
"metadata": {},
|
61 |
"outputs": [],
|
62 |
"source": [
|
|
|
70 |
"test_dataset = train_test[\"test\"]"
|
71 |
]
|
72 |
},
|
73 |
+
{
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"metadata": {},
|
76 |
+
"source": [
|
77 |
+
"## Analysis"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": null,
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"train = dataset[\"train\"]\n",
|
87 |
+
"test = dataset['test']\n",
|
88 |
+
"\n",
|
89 |
+
"train_df = pd.DataFrame(train)"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 24,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"train_df[\"path\"] = train_df[\"audio\"].apply(lambda x: x['path'])\n",
|
99 |
+
"train_df[\"array\"] = train_df[\"audio\"].apply(lambda x: x['array'])\n",
|
100 |
+
"train_df[\"sampling_rate\"] = train_df[\"audio\"].apply(lambda x: x['sampling_rate'])"
|
101 |
+
]
|
102 |
+
},
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
"execution_count": null,
|
106 |
"metadata": {},
|
107 |
"outputs": [],
|
108 |
"source": [
|
109 |
+
"# Target sampling rate\n",
|
110 |
+
"target_sr = 12000\n",
|
111 |
+
"\n",
|
112 |
+
"# Function to resample the audio array\n",
|
113 |
+
"def resample_audio(array, orig_sr, target_sr):\n",
|
114 |
+
" array = np.array(array) # Ensure it's a numpy array\n",
|
115 |
+
" if orig_sr != target_sr:\n",
|
116 |
+
" array = librosa.resample(array, orig_sr=orig_sr, target_sr=target_sr)\n",
|
117 |
+
" return array\n",
|
118 |
+
"\n",
|
119 |
+
"# Apply resampling to each row\n",
|
120 |
+
"train_df[\"resampled_array\"] = train_df.apply(\n",
|
121 |
+
" lambda row: resample_audio(row[\"array\"], row[\"sampling_rate\"], target_sr), axis=1\n",
|
122 |
+
")\n",
|
123 |
+
"\n",
|
124 |
+
"# Update the sampling rate column to reflect the target rate\n",
|
125 |
+
"train_df[\"sampling_rate\"] = target_sr\n"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"train_df.sampling_rate.describe()"
|
135 |
]
|
136 |
},
|
137 |
{
|
|
|
166 |
"\n",
|
167 |
"# Make random predictions (placeholder for actual model inference)\n",
|
168 |
"true_labels = test_dataset[\"label\"]\n",
|
169 |
+
"\n",
|
170 |
+
"\n",
|
171 |
"predictions = [random.randint(0, 1) for _ in range(len(true_labels))]\n",
|
172 |
"\n",
|
173 |
"predictions\n",
|