File size: 6,532 Bytes
9a85c9a
 
 
 
 
 
 
 
 
 
 
 
 
b49028b
b92e1c5
9a85c9a
 
a3654b1
6d758ef
b49028b
29da029
d532b1b
29da029
d532b1b
29da029
 
 
 
 
9a85c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b92e1c5
a3654b1
 
b92e1c5
 
9a85c9a
 
 
 
 
 
 
 
 
 
88c2b88
b92e1c5
 
9a85c9a
 
9b9ccec
db45ded
 
 
 
 
 
 
 
9a85c9a
ff8b33b
9a85c9a
db45ded
9a85c9a
 
 
 
 
 
 
 
 
 
 
e9073c2
26acab0
e9073c2
9e67411
6343e6d
9a85c9a
 
05f7bfe
ed66a4a
 
05f7bfe
29da029
a1b9061
a3654b1
3acd203
29da029
4593ac7
7a7857a
 
 
8d3dded
c468b59
3acd203
714116a
a1b9061
0b2fffd
db45ded
9a85c9a
 
db45ded
 
e9073c2
db45ded
 
05f7bfe
fdcc4cf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import sys, os
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import soundfile as sf
from datetime import datetime
import pytz

tz = pytz.timezone('Asia/Shanghai')
net_g = None
models = {
    "Mellowdear": "./MODELS/adorabledarling.pth",
    "MistyNikki": "./MODELS/nikki9400.pth",
    "Silverleg": "./MODELS/J8900.pth",
    "Xelo": "./MODELS/HER_1100.pth",
    "Rrabbitt": "./MODELS/rabbit4900.pth",
    "VVV": "./MODELS/v3.pth",
    "AlluWin": "./MODELS/AW.pth",
    "Hypnosia": "./MODELS/hypno.pth",
    "PremJ": "./MODELS/premj.pth",
    "Umemura": "./MODELS/take2.pth",
    "ArasakaAI": "./MODELS/Arasaka.pth",
     "Terra": "./MODELS/TERRA.pth",
}

def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst=phones.to(device).unsqueeze(0)
        tones=tones.to(device).unsqueeze(0)
        lang_ids=lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        sf.write("tmp.wav", audio, 44100)
        return audio



def convert_wav_to_mp3(wav_file):
    global tz
    now = datetime.now(tz).strftime('%m%d%H%M%S')    
    os.makedirs('out', exist_ok=True)  
    output_path_mp3 = os.path.join('out', f"{now}.mp3")

    renamed_input_path = os.path.join('in', f"in.wav")
    os.makedirs('in', exist_ok=True)
    os.rename(wav_file.name, renamed_input_path)
    command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
    os.system(" ".join(command))
    return output_path_mp3
    
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
    global net_g,speakers,tz
    now = datetime.now(tz).strftime('%m-%d %H:%M:%S')
    model_path = models[model]
    net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    print(now+text)
    try:
        with torch.no_grad():
            audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
        with open('tmp.wav', 'rb') as wav_file:
            mp3 = convert_wav_to_mp3(wav_file)  
        return "生成语音成功", (hps.data.sampling_rate, audio), mp3
    except Exception as e:
        return "生成语音失败:" + str(e), None, None


if __name__ == "__main__":
    hps = utils.get_hparams_from_file("./configs/config.json")
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
   
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(device)
    _ = net_g.eval()

    speaker_ids = hps.data.spk2id
    speaker = list(speaker_ids.keys())[0]
    theme='remilia/Ghostly'
    
    with gr.Blocks(theme=theme) as app:
        with gr.Column():
            with gr.Column():

                gr.Markdown('''
                **仅供测试用,质量参差** Can only read Chinese
                模型训练以及推理基于开源项目Bert-VITS2: https://github.com/fishaudio/Bert-VITS2
                ''')
                text = gr.TextArea(label="输入需要生成语音的文字(标点也会影响语气)", placeholder="输入文字",
                                value="今天拿白金了吗",
                                info="使用huggingface的免费CPU进行推理,因此速度不快,一次性不要输入超过500汉字。字数越多,生成速度越慢,请耐心等待,只会说中文。",
                                  )
                model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='声音模型')
                with gr.Accordion(label="展开设置生成参数", open=False):
                    sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
                    noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
                    noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
                    length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
                btn = gr.Button("✨生成", variant="primary")
            with gr.Column():
                audio_output = gr.Audio(label="试听")
                MP3_output = gr.File(label="💾下载")
                text_output = gr.Textbox(label="调试信息")
                gr.Markdown("""
                
                """)
        btn.click(
                tts_generator,
                inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
                outputs=[text_output, audio_output,MP3_output]
                )
        gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP9" /></div>''')
    app.launch(show_error=True)