Spaces:
Runtime error
Runtime error
File size: 13,783 Bytes
8ff3f46 62f7ef2 8ff3f46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# Ultralytics YOLO π, AGPL-3.0 license
from collections import defaultdict
import logging
import cv2
import numpy as np
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator, colors
from shapely.geometry import LineString, Point, Polygon
# create logger
logger = logging.getLogger(__name__).addHandler(logging.NullHandler())
# need shapely>=2.0.0
check_requirements("shapely>=2.0.0")
class ObjectCounter:
"""
A class to manage the counting of objects in a real-time video stream
based on their tracks.
"""
def __init__(self):
"""
Initializes the Counter with default values for various tracking and
counting parameters.
"""
# Mouse events
self.is_drawing = False
self.selected_point = None
# Region & Line Information
self.reg_pts = [(20, 400), (1260, 400)]
self.line_dist_thresh = 15
self.counting_region = None
self.region_color = (255, 0, 255)
self.region_thickness = 5
# Image and annotation Information
self.im0 = None
self.tf = None
self.view_img = False
self.view_in_counts = True
self.view_out_counts = True
self.names = None # Classes names
self.annotator = None # Annotator
# Object counting Information
self.in_counts = 0
self.out_counts = 0
self.out_counts_prev = self.out_counts
self.in_counts_prev = self.in_counts
self.counting_list = []
self.count_txt_thickness = 0
self.count_txt_color = (0, 0, 0)
self.count_color = (255, 255, 255)
# Tracks info
self.track_history = defaultdict(list)
self.track_thickness = 2
self.draw_tracks = False
self.draw_boxes = False # added by steve.yin @ 3/1/2024
self.track_color = (0, 255, 0)
# Check if environment support imshow
self.env_check = check_imshow(warn=True)
def set_args(
self,
classes_names,
reg_pts,
count_reg_color=(255, 0, 255),
line_thickness=2,
track_thickness=2,
view_img=False,
view_in_counts=True,
view_out_counts=True,
draw_tracks=False,
draw_boxes=False, # added by steve.yin @ 3/1/2024
draw_reg_pts=True, # added by steve.yin @ 3/1/2024
count_txt_thickness=2,
count_txt_color=(0, 0, 0),
count_color=(255, 255, 255),
track_color=(0, 255, 0),
region_thickness=5,
line_dist_thresh=15,
):
"""
Configures the Counter's image, bounding box line thickness,
and counting region points.
Args:
line_thickness (int): Line thickness for bounding boxes.
view_img (bool): Flag to control display the video stream.
view_in_counts (bool): Flag to control display the incounts.
view_out_counts (bool): Flag to control display the outcounts.
reg_pts (list): Initial list of points for the counting region.
classes_names (dict): Classes names
track_thickness (int): Track thickness
draw_tracks (Bool): draw tracks
draw_boxes (Bool): draw boxes
draw_reg_pts (Bool): draw reg_pts
count_txt_thickness (int): Text thickness object counting display
count_txt_color (RGB color): count text color value
count_color (RGB color): count text background color value
count_reg_color (RGB color): Color of object counting region
track_color (RGB color): color for tracks
region_thickness (int): Object counting Region thickness
line_dist_thresh (int): Euclidean Distance threshold line counter
"""
self.tf = line_thickness
self.view_img = view_img
self.view_in_counts = view_in_counts
self.view_out_counts = view_out_counts
self.track_thickness = track_thickness
self.draw_tracks = draw_tracks
self.draw_boxes = draw_boxes # added by steve.yin @ 3/1/2024
self.draw_reg_pts = draw_reg_pts # added by steve.yin @ 3/1/2024
# Region and line selection
if len(reg_pts) == 2:
logging.info("Line Counter Initiated.")
self.reg_pts = reg_pts
self.counting_region = LineString(self.reg_pts)
u = np.array([self.reg_pts[0][0], self.reg_pts[0][1]])
v = np.array([self.reg_pts[1][0], self.reg_pts[1][1]])
elif len(reg_pts) == 4:
logging.info("Region Counter Initiated.")
self.reg_pts = reg_pts
self.counting_region = Polygon(self.reg_pts)
u = np.array([
(self.reg_pts[0][0] + self.reg_pts[1][0]) / 2,
(self.reg_pts[0][1] + self.reg_pts[1][1]) / 2,
])
v = np.array([
(self.reg_pts[2][0] + self.reg_pts[3][0]) / 2,
(self.reg_pts[2][1] + self.reg_pts[3][1]) / 2,
])
else:
logging.warning(
"Invalid Region points, which can only be 2 or 4. " +
"Using Line Counter Instead!"
)
self.counting_region = LineString(self.reg_pts)
u = np.array(self.counting_region.coords[0])
v = np.array(
self.counting_region.coords[len(self.counting_region.coords)-1]
)
# get line orientation, rotate ccw 90degrees, get line normal vector
n = v - u
nvec = np.array([-n[1], n[0]])
# print(f"v: {v}, u: {u}, n: {n}, nvec0: {nvec}")
self.counting_region_nvec = nvec / (np.linalg.norm(nvec) + 1e-6)
# print(f"nvec: {self.counting_region_nvec}")
self.names = classes_names
self.track_color = track_color
self.count_txt_thickness = count_txt_thickness
self.count_txt_color = count_txt_color
self.count_color = count_color
self.region_color = count_reg_color
self.region_thickness = region_thickness
self.line_dist_thresh = line_dist_thresh
def mouse_event_for_region(self, event, x, y, flags, params):
"""
This function is designed to move region with mouse events in a
real-time video stream.
Args:
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE,
cv2.EVENT_LBUTTONDOWN, etc.).
x (int): The x-coordinate of the mouse pointer.
y (int): The y-coordinate of the mouse pointer.
flags (int): Any flags associated with the event (e.g.,
cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
params (dict): Additional parameters passing to the function.
"""
if event == cv2.EVENT_LBUTTONDOWN:
for i, point in enumerate(self.reg_pts):
if (
isinstance(point, (tuple, list))
and len(point) >= 2
and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10)
):
self.selected_point = i
self.is_drawing = True
break
elif event == cv2.EVENT_MOUSEMOVE:
if self.is_drawing and self.selected_point is not None:
self.reg_pts[self.selected_point] = (x, y)
self.counting_region = Polygon(self.reg_pts)
elif event == cv2.EVENT_LBUTTONUP:
self.is_drawing = False
self.selected_point = None
def extract_and_process_tracks(self, tracks):
"""
Extracts and processes tracks for object counting in a video stream.
"""
boxes = tracks[0].boxes.xyxy.cpu()
clss = tracks[0].boxes.cls.cpu().tolist()
track_ids = tracks[0].boxes.id.int().cpu().tolist()
# Annotator Init and region drawing
self.annotator = Annotator(self.im0, self.tf, self.names)
# self.annotator.draw_region(
# reg_pts=self.reg_pts,
# color=self.region_color,
# thickness=self.region_thickness
# )
# Extract tracks
for box, track_id, cls in zip(boxes, track_ids, clss):
# Draw bounding box [modified by steve.yin @ 3/1/2024]
if self.draw_reg_pts:
self.annotator.draw_region(
reg_pts=self.reg_pts,
color=self.region_color,
thickness=self.region_thickness
)
if self.draw_boxes:
self.annotator.box_label(
box=box,
label=f"{track_id}:{self.names[cls]}",
color=colors(int(cls), True)
)
# Draw Tracks
track_line = self.track_history[track_id]
track_line.append((
float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)
))
if len(track_line) > 30:
track_line.pop(0)
# Draw track trails
if self.draw_tracks:
self.annotator.draw_centroid_and_tracks(
track=track_line,
color=self.track_color,
track_thickness=self.track_thickness
)
prev_position = self.track_history[track_id][0] \
if len(self.track_history[track_id]) > 1 else None
# Count objects
if len(self.reg_pts) == 4:
if (
prev_position is not None
and self.counting_region.contains(Point(track_line[-1]))
and track_id not in self.counting_list
):
self.counting_list.append(track_id)
obj_track_vec = np.array([
track_line[-1][0] - prev_position[0],
track_line[-1][1] - prev_position[1]
])
if np.sign(
np.dot(obj_track_vec, self.counting_region_nvec)
) < 0:
self.out_counts += 1
else:
self.in_counts += 1
elif len(self.reg_pts) == 2:
if prev_position is not None:
distance = Point(track_line[-1]) \
.distance(self.counting_region)
if (
distance < self.line_dist_thresh and
track_id not in self.counting_list
):
self.counting_list.append(track_id)
obj_track_vec = np.array([
track_line[-1][0] - prev_position[0],
track_line[-1][1] - prev_position[1]
])
logging.info(f"obj_track_vec: {obj_track_vec}")
if np.sign(
np.dot(obj_track_vec, self.counting_region_nvec)
) < 0:
self.out_counts += 1
else:
self.in_counts += 1
self.outcounts_updated()
self.incounts_updated()
self.out_counts_prev = self.out_counts
self.in_counts_prev = self.in_counts
incount_label = f"In: {self.in_counts}"
outcount_label = f"Out: {self.out_counts}"
# Display counts based on user choice
counts_label = None
if not self.view_in_counts and not self.view_out_counts:
counts_label = None
elif not self.view_in_counts:
counts_label = outcount_label
elif not self.view_out_counts:
counts_label = incount_label
else:
counts_label = f"{incount_label} | {outcount_label}"
if counts_label is not None:
self.annotator.count_labels(
counts=counts_label,
count_txt_size=self.count_txt_thickness,
txt_color=self.count_txt_color,
color=self.count_color,
)
def display_frames(self):
"""Display frame."""
if self.env_check:
cv2.namedWindow("Ultralytics YOLOv8 Object Counter")
# only add mouse event If user drawn region
if len(self.reg_pts) == 4:
cv2.setMouseCallback(
"Ultralytics YOLOv8 Object Counter",
self.mouse_event_for_region,
{"region_points": self.reg_pts}
)
cv2.imshow("Ultralytics YOLOv8 Object Counter", self.im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord("q"):
return
def start_counting(self, im0, tracks):
"""
Main function to start the object counting process.
Args:
im0 (ndarray): Current frame from the video stream.
tracks (list): List of tracks obtained from the object tracking process.
"""
self.im0 = im0 # store image
if tracks[0].boxes.id is None:
if self.view_img:
self.display_frames()
return im0
self.extract_and_process_tracks(tracks)
if self.view_img:
self.display_frames()
return self.im0
def incounts_updated(self):
if self.in_counts_prev < self.in_counts:
yield f"{self.in_counts}"
def outcounts_updated(self):
if self.out_counts_prev < self.out_counts:
yield f"{self.out_counts}"
if __name__ == "__main__":
ObjectCounter()
|